已知函数,钝角(角对边为)的角满足.(Ⅰ)求函数的单调递增区间;(Ⅱ)若,求.
已知函数f(x)=lnx-mx(mR). (1)若曲线y=f(x)过点P(1,-1),求曲线y=f(x)在点P处的切线方程; (2)求函数f(x)在区间[1,e]上的最大值; (3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2.
已知椭圆C:=1(a>b>0)过点P(-1,-1),c为椭圆的半焦距,且c=b.过点P作两条互相垂直的直线l1,l2与椭圆C分别交于另两点M,N. (1)求椭圆C的方程; (2)若直线l1的斜率为-1,求△PMN的面积; (3)若线段MN的中点在x轴上,求直线MN的方程.
某种树苗栽种时高度为A(A为常数)米,栽种n年后的高度记为f(n).经研究发现f(n)近似地满足 f(n)=,其中,a,b为常数,n∈N,f(0)=A.已知栽种3年后该树木的高度为栽种时高度的3倍. (1)栽种多少年后,该树木的高度是栽种时高度的8倍; (2)该树木在栽种后哪一年的增长高度最大.
如图,在四棱锥P-ABCD中,O为AC与BD的交点,AB^平面PAD,△PAD是正三角形, DC//AB,DA=DC=2AB. (1)若点E为棱PA上一点,且OE∥平面PBC,求的值; (2)求证:平面PBC^平面PDC.
在△ABC中,角A,B,C所对的边分别为a,b,c,且+1=. (1)求B; (2)若cos(C+)=,求sinA的值.