已知函数,钝角(角对边为)的角满足.(Ⅰ)求函数的单调递增区间;(Ⅱ)若,求.
( 本题满分14分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当2时,车流速度v是车流密度x的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).
(本题满分14分)已知函数的一系列对应值如下表:
(1)根据表格提供的数据求函数的解析式;(2)根据(1)的结果,若函数周期为,求在区间上的最大、最小值及对应的的值.
( 本题满分12分) 已知函数(1)求的最小正周期、单调增区间、对称轴和对称中心;(2)该函数图象可由的图象经过怎样的平移和伸缩变换得到?
(本题满分12分)已知:求下列各式的值:(1); (2) ; (3)
设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.(Ⅰ)用表示a,b,c;(Ⅱ)若函数在(-1,3)上单调递减,求的取值范围.