如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.
(本小题满分15分)如图,已知正方形和矩形所在的平面互相垂直,,为线段的中点。(Ⅰ)求证:∥平面;(Ⅱ)求二面角的平面角的大小.
(本小题满分15分)已知数列的前n项和为Sn,且满足Sn+an=2.(Ⅰ)求数列的通项公式;(Ⅱ)求满足不等式的n的取值范围.
(本小题满分14分)在中,角、B、C所对的边分别是,.(Ⅰ)求角C;(Ⅱ)若的最短边长是,求最长边的长.
(本题10分)已知是定义在上的奇函数,时,.(1)求在上的表达式;(2)令,问是否存在大于零的实数、,使得当时,函数值域为,若存在求出、的值,若不存在请说明理由.
(本题8分)设二次,不等式的解集是.(1)求; (2)当函数的定义域是时,求函数的最大值.