(本题10分)已知是定义在上的奇函数,时,.(1)求在上的表达式;(2)令,问是否存在大于零的实数、,使得当时,函数值域为,若存在求出、的值,若不存在请说明理由.
在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为,过点的直线交椭圆于两点,且的周长为16,求椭圆的标准方程.
如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8. (1)求椭圆M的标准方程; (2)设直线与椭圆有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时的值.
已知一条曲线C在y轴右边,C上任一点到点F(2,0)的距离减去它到y轴的距离的差都是2 (1)求曲线C的方程; (2)一直线l与曲线C交于A,B两点,且|AF|+|BF|=8,证:AB的垂直平分线恒过定点.
如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2, (1)求证:AC⊥BD; (2)若平面ABD⊥平面CBD,且BD=,求二面角C﹣AD﹣B的余弦值.
如图,在中,边上的中线长为3,且,. (1)求的值; (2)求边的长.