如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,AF⊥DE,F是垂足.(1)求证:AF⊥DB;(2)如果圆柱与三棱锥D﹣ABE的体积的比等于3π,求直线DE与平面ABCD所成的角.
(本小题满分12分) 甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹). (1)如果甲只射击次,求在这一枪出现空弹的概率; (2)如果甲共射击次,求在这三枪中出现空弹的概率; (3)如果在靶上画一个边长为的等边,甲射手用实弹瞄准了三角形区域随机射击,且弹孔都落在三角形内。求弹孔与三个顶点的距离都大于1的概率(忽略弹孔大小).
(本小题满分12分) 等比数列的各项均为正数,且 (1)求数列的通项公式. (2)设 ,求数列的前n项和.
(本小题满分10分) 若关于的不等式的解集是,的定义域是,若,求实数的取值范围。
(本小题满分10分) 设,求证:.
(本小题满分10分) 直线(为参数,为常数且)被以原点为极点,轴的正半轴为极轴,方程为的曲线所截,求截得的弦长.