已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.(1)用表示,并求的最大值;(2)判断当时,的大小,并证明.
如图,在四棱锥中,底面是矩形,平面,,,于点. (1) 求证:; (2) 求直线与平面所成的角的余弦值.
已知各项均不相等的等差数列的前四项和成等比. (1)求数列的通项公式; (2)设,若恒成立,求实数的最大值.
在中,内角的对边分别为,且. (1)求角的大小; (2)若,求的面积.
已知函数(),其中. (1)若曲线与在点处相交且有相同的切线,求的值; (2)设,若对于任意的,函数在区间上的值恒为负数,求的取值范围.
如图,已知圆,经过椭圆的右焦点F及上顶点B,过圆外一点倾斜角为的直线交椭圆于C,D两点, (1)求椭圆的方程; (2)若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.