(Ⅰ)小问5分,(Ⅱ)小问7分)安排四个大学生到A、B、C三个学校支教,设每个大学生去任何一个学校是等可能的. (1)求四个大学生中恰有两人去A校支教的概率.(2)设有大学生去支教的学校的个数为,求的分布列.
分别用辗转相除法和更相减损之术求下列两数的最大公约数. (1)261,319;(2)1 734,816.
求满足1+3+5+…+n>500的最小自然数n.
已知函数f(x)=x2,将区间[0,1]十等分,画出求各等分点及端点函数值的算法的框图,并写出程序.
意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子? 试画出解决此问题的程序框图,并编写相应的程序.
有一列数1,2,5,26,…,你能找出它的规律吗?下面的程序框图所示是输出这个数列的前10项,并求和的算法,试将框图补充完整,并写出相应的程序.