探究:是否存在常数a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)对对一切正自然数n均成立,若存在求出a、b、c,并证明;若不存在,请说明理由.
(本小题满分12分)某公司购买了一博览会门票10张,其中甲类票4张,乙类票6张,现从这10张票中任取3张奖励一名员工.(1)求该员工得到甲类票2张,乙类票1张的概率;(2)求该员工得到甲类票张数多于乙类票张数的概率,
(本小题共12分)已知数列满足:,,
(1)求证:数列 为等差数列; (2) 求数列的通项公式;
(3)令 ,求证: .
(本题满分12分)△ABC中,是A,B,C所对的边,S是该三角形的面积,且(1)求∠B的大小;(2)若=4,,求的值。
(本题满分12分)已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4, 3),M是BC边上的中点。(1)求AB边所在的直线方程;(2)求中线AM的长。
(本题满分10分)作图(不要求写出作法,请保留作图痕迹)画出下图几何体的三视图(尺寸自定);画出一个底面直径为4cm,高为2cm的圆锥的直观图