(本小题满分10分)选修4- 4:坐标系与参数方程在直角坐标系中,以原点为极点,x轴的正半轴为极轴建极坐标系,已知曲线C:,过点P(-2,-4)的直线l的参数方程为:直线l与曲线C分别交于M,N.(I) 写出曲线C和直线l的普通方程;(II)若|PM|,|MN|,|PN|成等比数列,求a的值
已知椭圆的两个焦点坐标分别是,,并且经过点,求它的标准方程.
设函数.(1)当时,求函数的极大值;(2)若函数的图象与函数的图象有三个不同的交点,求的取值范围;(3)设,当时,求函数的单调减区间.
如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点和,且满足,,其中为正常数. 当点恰为椭圆的右顶点时,对应的.(1)求椭圆的离心率;(2)求与的值;(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.
如图所示,某人想制造一个支架,它由四根金属杆构成,其底端三点均匀地固定在半径为的圆上(圆在地面上),三点相异且共线,与地面垂直. 现要求点到地面的距离恰为,记用料总长为,设.(1)试将表示为的函数,并注明定义域;(2)当的正弦值是多少时,用料最省?
设函数.(1)用反证法证明:函数不可能为偶函数;(2)求证:函数在上单调递减的充要条件是.