(本小题满分13分)在四棱锥中,底面是正方形,与交于点,底面,为的中点. (Ⅰ)求证:∥平面;(Ⅱ)求证:;(Ⅲ)若在线段上是否存在点,使平面?若存在,求出 的值,若不存在,请说明理由.
如图,在中,,垂足为,且. (Ⅰ)求的大小;(Ⅱ)设为的中点,已知的面积为15,求的长
(本小题满分14分)在周长为定值的中,已知,动点的运动轨迹为曲线G,且当动点运动时,有最小值.(1) 以所在直线为轴,线段的中垂线为轴建立直角坐标系,求曲线的方程;(2) 过点作圆的切线交曲线于,两点.将线段MN的长|MN|表示为的函数,并求|MN|的最大值.
(本小题满分13分)已知,函数,.(1)判断函数在区间上的单调性(其中为自然对数的底数);(2)是否存在实数,使曲线在点处的切线与轴垂直若存在,求出的值;若不存在,请说明理由.
本小题满分12分)如图菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.(1) 求证:平面;(2) 求证:平面平面;(3) 求三棱锥的体积.
(本小题满分12分)已知直线:与直线:互相平行,经过点的直线与,垂直,且被,截得的线段长为,试求直线的方程.