(本小题满分14分)
如图6,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,直线平面.
(1)证明:;
(2)在上是否存在一点,使得∥平面,若存在,请确定点的位置,并证明之;若不存在,请说明理由;
(3)求点到平面的距离.
(本小题满分12分)如图,四面体中,分别的中点,,.
(Ⅰ)求证:AO⊥平面;
(Ⅱ)求异面直线与所成角的余弦值;
(Ⅲ)求点E到平面ACD的距离.
(本小题满分14分)如图,在四棱锥中,底面为平行四边形,,为的中点,底面.
(1)求证:平面;
(2)在线段上是否存在一点,使得平面?若存在,写出证明过程;若不存在,请说明理由.
(本小题满分12分)如图1,在Rt中,,.D、E分别是上的点,且,将沿折起到的位置,使,如图2.
(Ⅰ)求证:平面平面;
(Ⅱ)若,求与平面所成角的余弦值;
(Ⅲ)当点在何处时,的长度最小,并求出最小值.
(本小题满分12分)如图,四棱锥中,底面四边形为直角梯形,对角线交与点,,底面,点为棱上一动点。
(Ⅰ)证明:;
(Ⅱ)若平面,求三棱锥的体积.
如图,平面平面,四边形是边长为2的正方形,为上的点,且平面.
(1)求证平面;
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.
如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.
(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.
棱柱的所有棱长都为2,,平面⊥平面,.
(1)证明:;
(2)求锐二面角的平面角的余弦值;
(3)在直线上是否存在点,使得∥平面,若存在求出的位置.
(本小题满分12分)如图,正四棱锥的底面是边长为的正方形,侧棱长是底面边长为倍,为底面对角线的交点,为侧棱上的点.
(1)求证:;
(2)为的中点,若平面,求证:平面.
(本小题满分13分)
如图5,已知点是圆心为半径为1的半圆弧上从点数起的第一个三等分点,是直径,,平面,点是的中点.
(1)求二面角的余弦值.
(2)求点到平面的距离.