如图,为多面体,平面与平面垂直,点在线段上,△OAB,,△,△,△都是正三角形。
(Ⅰ)证明直线∥;
(II)求棱锥F—OBED的体积。
如图,三棱柱中,侧面为菱形,.
(Ⅰ)证明:;
(Ⅱ)若,,,求二面角的余弦值.
如图,四棱锥中,底面为平行四边形,,,⊥底面.
(1)证明:平面平面;
(2)若二面角为,求与平面所成角的正弦值。
如图,已知四棱锥,底面为菱形,平面,,分别是的中点.
(Ⅰ)证明:;
(Ⅱ)若,求二面角的余弦值.
如图,四棱锥中,为矩形,平面平面.
(1)求证:
(2)若问为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图(1),在三角形ABC中,,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.
如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.
(1)求证:BC⊥A1D.
(2)求证:平面A1BC⊥平面A1BD.
(3)求三棱锥A1-BCD的体积.
如图是棱长为的正方体的平面展开图,则在原正方体中,
①平面;
②平面;
③CN与BM成角;
④DM与BN垂直.
以上四个命题中,正确命题的序号是____ ____。 (写出所有正确命题的序号)
(本小题满分12分)如图,在四棱锥P-ABCD中,PD^平面ABCD,AD=CD,DB平分∠ADC,E为PC的中点.
(Ⅰ)证明:PA∥平面BDE;
(Ⅱ)证明:AC^平面PBD.