如图,已知四边形 是平行四边形,点 , 分别是 , 上的点, ,并且 .
求证:(1) ;
(2)四边形 是菱形.
如图,以 为直径的 外接于 ,过 点的切线 与 的延长线交于点 , 的平分线分别交 , 于点 , ,其中 , 的长是一元二次方程 的两个实数根.
(1)求证: ;
(2)在线段 上是否存在一点 ,使得四边形 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.
如图,将矩形 沿 折叠,使点 落在 边上的点 处,过点 作 交 于点 ,连接 .
(1)求证:四边形 是菱形;
(2)探究线段 、 、 之间的数量关系,并说明理由;
(3)若 , ,求 的长.
如图,在 中, ,以 为直径的圆交 于点 ,交 于点 ,延长 至点 ,使 ,连接 , .
(1)求证:四边形 是菱形;
(2)若 , ,求半圆和菱形 的面积.
已知,四边形 中, 是对角线 上一点, ,以 为直径的 与边 相切于点 . 点在 上,连接 .
(1)求证: ;
(2)若 ,求证:四边形 是菱形.
下列说法正确的是
A.一组对边平行另一组对边相等的四边形是平行四边形
B.对角线互相垂直平分的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线互相垂直且相等的四边形是正方形
如图, 是 的角平分线.
(1)作线段 的垂直平分线 ,分别交 、 于点 、 ;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.
(2)连接 、 ,四边形 是 形.(直接写出答案)
下列说法:
①四边相等的四边形一定是菱形
②顺次连接矩形各边中点形成的四边形一定是正方形
③对角线相等的四边形一定是矩形
④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
其中正确的有 个.
A.4B.3C.2D.1
如图,在矩形 中,对角线 的垂直平分线 分别交 、 、 于点 、 、 ,连接 和 .
(1)求证:四边形 为菱形;
(2)若 , ,求菱形 的周长.
下列说法中不正确的是
A.四边相等的四边形是菱形
B.对角线垂直的平行四边形是菱形
C.菱形的对角线互相垂直且相等
D.菱形的邻边相等
综合与实践
折纸是一项有趣的活动,同学们小时候都玩过折纸,可能折过小动物、小花、飞机、小船等,折纸活动也伴随着我们初中数学的学习.
在折纸过程中,我们可以通过研究图形的性质和运动、确定图形位置等,进一步发展空间观念,在经历借助图形思考问题的过程中,我们会初步建立几何直观,折纸往往从矩形纸片开始,今天,就让我们带着数学的眼光来玩一玩折纸,看看折叠矩形的对角线之后能得到哪些数学结论.
实践操作
如图1,将矩形纸片 沿对角线 翻折,使点 落在矩形 所在平面内, 和 相交于点 ,连接 .
解决问题
(1)在图1中,
① 和 的位置关系为 ;
②将 剪下后展开,得到的图形是 ;
(2)若图1中的矩形变为平行四边形时 ,如图2所示,结论①和结论②是否成立,若成立,请挑选其中的一个结论加以证明,若不成立,请说明理由;
(3)小红沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,沿对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为 ;
拓展应用
(4)在图2中,若 , ,当△ 恰好为直角三角形时, 的长度为 .
平行四边形 中, 、 是两条对角线,现从以下四个关系① ;② ;③ ;④ 中随机取出一个作为条件,即可推出平行四边形 是菱形的概率为
A. B. C. D.1