如图,在菱形 中,按以下步骤作图:
①分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于 、 两点;
②作直线 ,且 恰好经过点 ,与 交于点 ,连接 .
则下列说法错误的是
A. B.
C.若 ,则 D.
如图,在 中, ,
(1)尺规作图(保留作图痕迹,不写作法)
①作 的垂直平分线,垂足为 ;
②以 为圆心, 长为半径作圆,交 于 异于 ,连接 ;
(2)探究 与 的位置关系,并证明你的结论.
平行四边形 中, , , 的中垂线分别交 , 于点 , ,垂足为 .
(1)求证: ;
(2)若 ,求 的值.
如图,在四边形 中, , .
(1)在图中,用尺规作线段 的垂直平分线 ,分别交 、 于点 、 .(保留作图痕迹,不写作法)
(2)连接 ,证明四边形 为菱形.
如图,点 在双曲线 上,过点 作 轴,垂足为 , 的垂直平分线交 于点 ,当 时, 的周长为 .
如图, , 是直线 两侧的点,以 为圆心, 长为半径画弧交 于 , 两点,又分别以 , 为圆心,大于 的长为半径画弧,两弧交于点 ,连接 , , ,下列结论不一定正确的是
A. |
|
B. |
点 , 关于直线 对称 |
C. |
点 , 关于直线 对称 |
D. |
平分 |
如图, 中, 是 上一点, 于点 , 是 的中点, 于点 ,与 交于点 ,若 , 平分 ,连接 , .
(1)求证: ;
(2)小亮同学经过探究发现: .请你帮助小亮同学证明这一结论.
(3)若 ,判定四边形 是否为菱形,并说明理由.
问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.即:如图1,在 中, , ,则: .
探究结论:小明同学对以上结论作了进一步研究.
(1)如图1,连接 边上中线 ,由于 ,易得结论:① 为等边三角形;② 与 之间的数量关系为 .
(2)如图2,点 是边 上任意一点,连接 ,作等边 ,且点 在 的内部,连接 .试探究线段 与 之间的数量关系,写出你的猜想并加以证明.
(3)当点 为边 延长线上任意一点时,在(2)条件的基础上,线段 与 之间存在怎样的数量关系?请直接写出你的结论 .
拓展应用:如图3,在平面直角坐标系 中,点 的坐标为 , ,点 是 轴正半轴上的一动点,以 为边作等边 ,当 点在第一象限内,且 时,求 点的坐标.
已知:如图, ,射线 上一点 .
求作:等腰 ,使线段 为等腰 的底边,点 在 内部,且点 到 两边的距离相等.
如图,四边形 是平行四边形,点 是边 上一点,且 , 交 于点 , 是 延长线上一点,下列结论:
① 平分 ;② 平分 ;③ ;④ .
其中正确结论的个数为
A.1B.2C.3D.4
如图,在 中, ,分别以点 和点 为圆心,以相同的长(大于 为半径作弧,两弧相交于点 和点 ,作直线 交 于点 ,交 于点 ,连接 .下列结论错误的是
A. B. C. D.
如图,在 中, ,分别以点 、 为圆心,大于 长为半径作弧,两弧分别交于 、 两点,过 、 两点的直线交 于点 ,若 , ,则 的长为
A. B. C. D.