初中数学

如图,在 ΔABC 中, ACB = 90 ° AC < BC .分别以点 A B 为圆心,大于 1 2 AB 的长为半径画弧,两弧交于 D E 两点,直线 DE BC 于点 F ,连接 AF .以点 A 为圆心, AF 为半径画弧,交 BC 延长线于点 H ,连接 AH .若 BC = 3 ,则 ΔAFH 的周长为   

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 4 ,点 E 是边 AD 的中点,点 F 是对角线 BD 上一动点, ADB = 30 ° .连结 EF ,作点 D 关于直线 EF 的对称点 P

(1)若 EF BD ,求 DF 的长;

(2)若 PE BD ,求 DF 的长;

(3)直线 PE BD 于点 Q ,若 ΔDEQ 是锐角三角形,求 DF 长的取值范围.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 40 ° ,点 D E 分别在边 AB AC 上, BD = BC = CE ,连结 CD BE

(1)若 ABC = 80 ° ,求 BDC ABE 的度数;

(2)写出 BEC BDC 之间的关系,并说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知 ΔABC ΔABD 在同一平面内,点 C D 不重合, ABC = ABD = 30 ° AB = 4 AC = AD = 2 2 ,则 CD 长为   

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形 ABCD 的顶点 A x 轴正半轴上,顶点 B C 在第一象限,顶点 D 的坐标 ( 5 2 2 ) .反比例函数 y = k x (常数 k > 0 x > 0 ) 的图象恰好经过正方形 ABCD 的两个顶点,则 k 的值是   

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC B = 70 ° ,以点 C 为圆心, CA 长为半径作弧,交直线 BC 于点 P ,连结 AP ,则 BAP 的度数是   

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形 ABCD 的对角线 BD 上,时钟中心在矩形 ABCD 对角线的交点 O 上.若 AB = 30 cm ,则 BC 长为    cm (结果保留根号).

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中, B = 60 ° ,点 P 从点 B 出发,沿折线 BC - CD 方向移动,移动到点 D 停止.在 ΔABP 形状的变化过程中,依次出现的特殊三角形是 (    )

A.

直角三角形 等边三角形 等腰三角形 直角三角形

B.

直角三角形 等腰三角形 直角三角形 等边三角形

C.

直角三角形 等边三角形 直角三角形 等腰三角形

D.

等腰三角形 等边三角形 直角三角形 等腰三角形

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

【推理】

如图1,在正方形 ABCD 中,点 E CD 上一动点,将正方形沿着 BE 折叠,点 C 落在点 F 处,连结 BE CF ,延长 CF AD 于点 G

(1)求证: ΔBCE ΔCDG

【运用】

(2)如图2,在【推理】条件下,延长 BF AD 于点 H .若 HD HF = 4 5 CE = 9 ,求线段 DE 的长.

【拓展】

(3)将正方形改成矩形,同样沿着 BE 折叠,连结 CF ,延长 CF BF 交直线 AD G H 两点,若 AB BC = k HD HF = 4 5 ,求 DE EC 的值(用含 k 的代数式表示).

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, CA = CB BC A 相切于点 D ,过点 A AC 的垂线交 CB 的延长线于点 E ,交 A 于点 F ,连结 BF

(1)求证: BF A 的切线.

(2)若 BE = 5 AC = 20 ,求 EF 的长.

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在正五边形 ABCDE 中,连结 AC BD 交于点 F ,则 AFB 的度数为   

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 AC = 5 BC = 6 ,点 D E F 分别是 AB BC CA 的中点,连结 DE EF ,则四边形 ADEF 的周长为 (    )

A.

6

B.

9

C.

12

D.

15

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 内接于 O BD 为直径, AD ̂ 上存在点 E ,满足 A E ^ = CD ^ ,连结 BE 并延长交 CD 的延长线于点 F BE AD 交于点 G

(1)若 DBC = α ,请用含 α 的代数式表示 AGB

(2)如图2,连结 CE CE = BG .求证: EF = DG

(3)如图3,在(2)的条件下,连结 CG AD = 2

①若 tan ADB = 3 2 ,求 ΔFGD 的周长.

②求 CG 的最小值.

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

【证明体验】

(1)如图1, AD ΔABC 的角平分线, ADC = 60 ° ,点 E AB 上, AE = AC .求证: DE 平分 ADB

【思考探究】

(2)如图2,在(1)的条件下, F AB 上一点,连结 FC AD 于点 G .若 FB = FC DG = 2 CD = 3 ,求 BD 的长.

【拓展延伸】

(3)如图3,在四边形 ABCD 中,对角线 AC 平分 BAD BCA = 2 DCA ,点 E AC 上, EDC = ABC .若 BC = 5 CD = 2 5 AD = 2 AE ,求 AC 的长.

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E 在边 AB 上, ΔBEC ΔFEC 关于直线 EC 对称,点 B 的对称点 F 在边 AD 上, G CD 中点,连结 BG 分别与 CE CF 交于 M N 两点.若 BM = BE MG = 1 ,则 BN 的长为    sin AFE 的值为   

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

初中数学三角形试题