如图,抛物线 经过 , 两点,与 轴交于点 ,连接 .
(1)求该抛物线的函数表达式;
(2)如图2,直线 经过点 ,点 为直线 上的一个动点,且位于 轴的上方,点 为抛物线上的一个动点,当 轴时,作 ,交抛物线于点 (点 在点 的右侧),以 , 为邻边构造矩形 ,求该矩形周长的最小值;
(3)如图3,设抛物线的顶点为 ,在(2)的条件下,当矩形 的周长取最小值时,抛物线上是否存在点 ,使得 ?若存在,请求出点 的坐标;若不存在,请说明理由.
已知关于 的二次函数 (实数 , 为常数).
(1)若二次函数的图象经过点 ,对称轴为 ,求此二次函数的表达式;
(2)若 ,当 时,二次函数的最小值为21,求 的值;
(3)记关于 的二次函数 ,若在(1)的条件下,当 时,总有 ,求实数 的最小值.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.
如图,在直角坐标系中,二次函数 的图象与 轴相交于点 和点 ,与 轴交于点 .
(1)求 、 的值;
(2)点 为抛物线上的动点,过 作 轴的垂线交直线 于点 .
①当 时,求当 点到直线 的距离最大时 的值;
②是否存在 ,使得以点 、 、 、 为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出 的值.
如图所示,抛物线与 轴交于 、 两点,与 轴交于点 ,且 , , ,抛物线的对称轴与直线 交于点 ,与 轴交于点 .
(1)求抛物线的解析式;
(2)若点 是对称轴上的一个动点,是否存在以 、 、 为顶点的三角形与 相似?若存在,求出点 的坐标,若不存在,请说明理由;
(3) 为 的中点,一个动点 从 点出发,先到达 轴上的点 ,再走到抛物线对称轴上的点 ,最后返回到点 .要使动点 走过的路程最短,请找出点 、 的位置,写出坐标,并求出最短路程.
(4)点 是抛物线上位于 轴上方的一点,点 在 轴上,是否存在以点 为直角顶点的等腰 ?若存在,求出点 的坐标,若不存在,请说明理由.
如图,在平面直角坐标系 中,平行四边形 的 边与 轴交于 点, 是 的中点, 、 、 的坐标分别为 , , .
(1)求过 、 、 三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线 上;
(3)设过 与 平行的直线交 轴于 , 是线段 之间的动点,射线 与抛物线交于另一点 ,当 的面积最大时,求 的坐标.
在平面直角坐标系中,抛物线 与 轴交于点 和点 ,与 轴交于点 ,顶点 的坐标为 .
(1)直接写出抛物线的解析式;
(2)如图1,若点 在抛物线上且满足 ,求点 的坐标;
(3)如图2, 是直线 上一个动点,过点 作 轴交抛物线于点 , 是直线 上一个动点,当 为等腰直角三角形时,直接写出此时点 及其对应点 的坐标.
已知抛物线 与 轴交于点 和 ,与 轴交于点 ,顶点为 ,点 在抛物线对称轴上且位于 轴下方,连 交抛物线于 ,连 、 .
(1)求抛物线的解析式;
(2)如图1,当 时,求 点的横坐标;
(3)如图2,过点 作 轴的平行线 ,过 作 于 ,若 ,求 点的坐标.
如图,抛物线 交 轴于 , 两点,交 轴于点 ,点 为线段 上的动点.
(1)求抛物线的解析式;
(2)求 的最小值;
(3)过点 作 交抛物线的第四象限部分于点 ,连接 , ,记 与 面积分别为 , ,设 ,求点 坐标,使得 最大,并求此最大值.
抛物线 与 轴相交于点 ,且抛物线的对称轴为 , 为对称轴与 轴的交点.
(1)求抛物线的解析式;
(2)在 轴上方且平行于 轴的直线与抛物线从左到右依次交于 、 两点,若 是等腰直角三角形,求 的面积;
(3)若 是对称轴上一定点, 是抛物线上的动点,求 的最小值(用含 的代数式表示).
已知抛物线 与 轴相交于 , 两点,与 轴交于点 ,点 是 轴上的动点.
(1)求抛物线的解析式;
(2)如图1,若 ,过点 作 轴的垂线交抛物线于点 ,交直线 于点 .过点 作 于点 ,当 为何值时, ;
(3)如图2,将直线 绕点 顺时针旋转,它恰好经过线段 的中点,然后将它向上平移 个单位长度,得到直线 .
① ;
②当点 关于直线 的对称点 落在抛物线上时,求点 的坐标.
如图,在平面直角坐标系中,四边形 为正方形,点 , 在 轴上,抛物线 经过点 , 两点,且与直线 交于另一点 .
(1)求抛物线的解析式;
(2) 为抛物线对称轴上一点, 为平面直角坐标系中的一点,是否存在以点 , , , 为顶点的四边形是以 为边的菱形.若存在,请求出点 的坐标;若不存在,请说明理由;
(3) 为 轴上一点,过点 作抛物线对称轴的垂线,垂足为 ,连接 , ,探究 是否存在最小值.若存在,请求出这个最小值及点 的坐标;若不存在,请说明理由.
如图,已知抛物线 与 轴交于点 ,点 (点 在点 的左边),与 轴交于点 ,点 为抛物线的顶点,连接 .直线 经过点 ,且与 轴交于点 .
(1)求抛物线的解析式;
(2)点 是抛物线上的一点,当 是以 为腰的等腰三角形时,求点 的坐标;
(3)点 为线段 上的一点,点 为线段 上的一点,连接 ,并延长 与线段 交于点 (点 在第一象限),当 且 时,求出点 的坐标.
如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,连接 ,与抛物线的对称轴交于点 ,顶点为点 .
(1)求抛物线的解析式;
(2)点 是对称轴左侧抛物线上的一个动点,点 在射线 上,若以点 、 、 为顶点的三角形与 相似,请直接写出点 的坐标.