已知抛物线 y = a x 2 + bx - 3 与 x 轴相交于 A ( - 1 , 0 ) , B ( 3 , 0 ) 两点,与 y 轴交于点 C ,点 N ( n , 0 ) 是 x 轴上的动点.
(1)求抛物线的解析式;
(2)如图1,若 n < 3 ,过点 N 作 x 轴的垂线交抛物线于点 P ,交直线 BC 于点 G .过点 P 作 PD ⊥ BC 于点 D ,当 n 为何值时, ΔPDG ≅ ΔBNG ;
(3)如图2,将直线 BC 绕点 B 顺时针旋转,它恰好经过线段 OC 的中点,然后将它向上平移 3 2 个单位长度,得到直线 O B 1 .
① tan ∠ BO B 1 = ;
②当点 N 关于直线 O B 1 的对称点 N 1 落在抛物线上时,求点 N 的坐标.
(本题4分)某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
这批样品的平均质量比标准质量多还是少?若每袋标准质量为450克,则抽样检测的总质量是多少?
(本题4分)已知-2xmy与3x3yn是同类项,求m-(m2n+3m-4n)+(2nm2-3n)的值
(本题4分)先化简,再求值:已知A=3x2y–xy2,B=–xy2 +3x2 y,求5A-4B的值,其中x=-2,y=-3.
、化简(4分×4,共16分)(1)2x2y-2xy-4xy2+xy+4x2y-3xy2 (2) 3 (4x2-3x+2)-2 (1-4x2+x) (3)5abc-2a2b-[ 3abc-3 (4ab2+a2b)] (4) (2x2+x)-2[x2-2(3 x2-x)]
正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上. 分别连接BD,BF,FD,得到△BFD. (1)在图中,若正方形CEFG的边长分别为1,3,4,且正方形ABCD的边长均为3,请通过计算填写下表:
(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图证明你的猜想.