初中数学

已知关于 x 的一元二次方程 x 2 - ( m + 1 ) x + 1 2 ( m 2 + 1 ) = 0 有实数根.

(1)求 m 的值;

(2)先作 y = x 2 - ( m + 1 ) x + 1 2 ( m 2 + 1 ) 的图象关于 x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;

(3)在(2)的条件下,当直线 y = 2 x + n ( n m ) 与变化后的图象有公共点时,求 n 2 - 4 n 的最大值和最小值.

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

α β 为方程 2 x 2 - 5 x - 1 = 0 的两个实数根,则 2 α 2 + 3 αβ + 5 β 的值为 (    )

A. - 13 B.12C.14D.15

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

( x 2 + y 2 ) 2 - 5 ( x 2 + y 2 ) - 6 = 0 ,则 x 2 + y 2 =   

来源:2020年四川省雅安市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如果关于 x 的一元二次方程 k x 2 - 3 x + 1 = 0 有两个实数根,那么 k 的取值范围是 (    )

A. k 9 4 B. k - 9 4 k 0 C. k 9 4 k 0 D. k - 9 4

来源:2020年四川省雅安市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - ( m + 1 ) x + 1 2 ( m 2 + 1 ) = 0 有实数根.

(1)求 m 的值;

(2)先作 y = x 2 - ( m + 1 ) x + 1 2 ( m 2 + 1 ) 的图象关于 x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;

(3)在(2)的条件下,当直线 y = 2 x + n ( n m ) 与变化后的图象有公共点时,求 n 2 - 4 n 的最大值和最小值.

来源:2017年湖北省武汉市江汉油田中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

α β 为方程 2 x 2 - 5 x - 1 = 0 的两个实数根,则 2 α 2 + 3 αβ + 5 β 的值为 (    )

A. - 13 B.12C.14D.15

来源:2017年湖北省武汉市江汉油田中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

某水果店在两周内,将标价为10元 / 斤的某种水果,经过两次降价后的价格为8.1元 / 斤,并且两次降价的百分率相同.

(1)求该种水果每次降价的百分率;

(2)从第一次降价的第1天算起,第 x 天( x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元 / 斤,设销售该水果第 x (天)的利润为 y (元),求 y x ( 1 x < 15 ) 之间的函数关系式,并求出第几天时销售利润最大?

时间 x (天)

1 x < 9

9 x < 15

x 15

售价(元 / 斤)

第1次降价后的价格

第2次降价后的价格

销量(斤)

80 - 3 x

120 - x

储存和损耗费用(元)

40 + 3 x

3 x 2 - 64 x + 400

(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?

来源:2017年湖北省随州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的方程 x 2 + ( 2 k - 1 ) x + k 2 - 1 = 0 有两个实数根 x 1 x 2

(1)求实数 k 的取值范围;

(2)若 x 1 x 2 满足 x 1 2 + x 2 2 = 16 + x 1 x 2 ,求实数 k 的值.

来源:2017年湖北省十堰市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 ( m - 1 ) 2 x 2 + 3 mx + 3 = 0 有一实数根为 - 1 ,则该方程的另一个实数根为  

来源:2020年四川省内江市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( k - 5 ) x + 1 - k = 0 ,其中 k 为常数.

(1)求证:无论 k 为何值,方程总有两个不相等实数根;

(2)已知函数 y = x 2 + ( k - 5 ) x + 1 - k 的图象不经过第三象限,求 k 的取值范围;

(3)若原方程的一个根大于3,另一个根小于3,求 k 的最大整数值.

来源:2017年湖北省荆州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

规定:如果关于 x 的一元二次方程 a x 2 + bx + c = 0 ( a 0 ) 有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:

①方程 x 2 + 2 x - 8 = 0 是倍根方程;

②若关于 x 的方程 x 2 + ax + 2 = 0 是倍根方程,则 a = ± 3

③若关于 x 的方程 a x 2 - 6 ax + c = 0 ( a 0 ) 是倍根方程,则抛物线 y = a x 2 - 6 ax + c x 轴的公共点的坐标是 ( 2 , 0 ) ( 4 , 0 )

④若点 ( m , n ) 在反比例函数 y = 4 x 的图象上,则关于 x 的方程 m x 2 + 5 x + n = 0 是倍根方程.

上述结论中正确的有 (    )

A.①②B.③④C.②③D.②④

来源:2017年湖北省荆州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈 = 10 尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为 x 尺,则可列方程为 (    )

A. x 2 - 6 = ( 10 - x ) 2 B. x 2 - 6 2 = ( 10 - x ) 2

C. x 2 + 6 = ( 10 - x ) 2 D. x 2 + 6 2 = ( 10 - x ) 2

来源:2017年湖北省荆州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知方程 x 2 + 5 x + 1 = 0 的两个实数根分别为 x 1 x 2 ,则 x 1 2 + x 2 2 =        

来源:2017年湖北省荆门市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - 4 x - m 2 = 0

(1)求证:该方程有两个不等的实根;

(2)若该方程的两实根 x 1 x 2 满足 x 1 + 2 x 2 = 9 ,求 m 的值.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( 2 k + 1 ) x + k 2 = 0 ①有两个不相等的实数根.

(1)求 k 的取值范围;

(2)设方程①的两个实数根分别为 x 1 x 2 ,当 k = 1 时,求 x 1 2 + x 2 2 的值.

来源:2017年湖北省黄冈市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学一元二次方程试题