初中数学

关于 x 的方程 2 x 2 + mx + n = 0 的两个根是 2 和1,则 n m 的值为 (    )

A. 8 B.8C.16D. 16

来源:2017年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.

(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;

(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知一元二次方程 x 2 3 x 2 = 0 的两个实数根为 x 1 x 2 ,则 ( x 1 1 ) ( x 2 1 ) 的值是  

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知 m n 是关于 x 的一元二次方程 x 2 2 tx + t 2 2 t + 4 = 0 的两实数根,则 ( m + 2 ) ( n + 2 ) 的最小值是 (    )

A.7B.11C.12D.16

来源:2017年四川省泸州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 4 x + m 1 = 0 的实数根 x 1 x 2 ,满足 3 x 1 x 2 x 1 x 2 > 2 ,则 m 的取值范围是  

来源:2018年山东省烟台市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 m x 2 ( m + 2 ) x + m 4 = 0 有两个不相等的实数根 x 1 x 2 .若 1 x 1 + 1 x 2 = 4 m ,则 m 的值是 (    )

A.2B. 1 C.2或 1 D.不存在

来源:2018年山东省潍坊市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

关于 x 的一元二次方程 ( m 5 ) x 2 + 2 x + 2 = 0 有实根,则 m 的最大整数解是  

来源:2018年山东省威海市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为 Q ,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的 Q 值都以平均值 n 计算.第一年有40家工厂用乙方案治理,共使 Q 值降低了12.经过三年治理,境内长江水质明显改善.

(1)求 n 的值;

(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数 m ,三年来用乙方案治理的工厂数量共190家,求 m 的值,并计算第二年用乙方案新治理的工厂数量;

(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的 Q 值比上一年都增加一个相同的数值 a .在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的 Q 值与当年用甲方案治理降低的 Q 值相等,第三年,用甲方案使 Q 值降低了39.5.求第一年用甲方案治理降低的 Q 值及 a 的值.

来源:2018年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 ( x - 3 ) ( x - 2 ) = p ( p + 1 )

(1)试证明:无论 p 取何值此方程总有两个实数根;

(2)若原方程的两根 x 1 x 2 ,满足 x 1 2 + x 2 2 - x 1 x 2 = 3 p 2 + 1 ,求 p 的值.

来源:2018年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知一元二次方程 2 x 2 + 2 x - 1 = 0 的两个根为 x 1 x 2 ,且 x 1 < x 2 ,下列结论正确的是 (    )

A. x 1 + x 2 = 1 B. x 1 · x 2 = - 1 C. | x 1 | < | x 2 | D. x 1 2 + x 1 = 1 2

来源:2018年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( 2 m + 1 ) x + m 2 - 2 = 0

(1)若该方程有两个实数根,求 m 的最小整数值;

(2)若方程的两个实数根为 x 1 x 2 ,且 ( x 1 - x 2 ) 2 + m 2 = 21 ,求 m 的值.

来源:2018年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + ( 2 k + 3 ) x + k 2 = 0 有两个不相等的实数根 x 1 x 2

(1)求 k 的取值范围;

(2)若 1 x 1 + 1 x 2 = - 1 ,求 k 的值.

来源:2018年湖北省随州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

若关于 x 的方程 x 2 + 2 x 3 = 0 2 x + 3 = 1 x a 有一个解相同,则 a 的值为 (    )

A.1B.1或 3 C. 1 D. 1 或3

来源:2017年四川省凉山州中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

一元二次方程 3 x 2 1 = 2 x + 5 两实根的和与积分别是 (    )

A. 3 2 2 B. 2 3 2 C. 2 3 ,2D. 3 2 ,2

来源:2017年四川省凉山州中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 - ( 2 k - 1 ) x + k 2 + k - 1 = 0 有实数根.

(1)求 k 的取值范围;

(2)若此方程的两实数根 x 1 x 2 满足 x 1 2 + x 2 2 = 11 ,求 k 的值.

来源:2018年湖北省十堰市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学一元二次方程试题