(本小题满分14分)已知函数(其中A>0,)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求的解析式;(Ⅱ)当,求的值域;
(本小题满分13分)已知函数.(Ⅰ)当时,求的最小正周期和值域;(Ⅱ)若函数在区间上是增函数,求实数的取值范围.
函数(其中,)的图象如图所示,若点A是函数的图象与x轴的交点,点B、D分别是函数的图象的最高点和最低点,点C是点B在x轴上的射影,则= 。
设函数f (x)=2cosx (cosx+sinx)-1,x∈R(1)求f (x)的最小正周期T;(2)求f (x)的单调递增区间.
(本小题满分12分)
设函数.
(1)写出函数的最小正周期及单调递减区间;
(2)当时,函数的最大值与最小值的和为,求的图象、轴的正半轴及x轴的正半轴三者围成图形的面积.
设函数给出下列四个论断:
① 它的周期为;
② 它的图象关于直线对称;
③它的图象关于点对称;④在区间上是增函数。
请以其中两个论断为条件,另两个为结论,写出一个正确的命题: .(用符号表示)
(12分)已知,,且,求:
⑴·及;
⑵若的最小值为-,求实数的值.