已知函数(1)将函数化简成的形式,并指出的周期;(2)求函数上的最大值和最小值.
如图,在直三棱柱中,,.棱上有两个动点E,F,且EF =" a" (a为常数). (Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直; (Ⅱ)判断三棱锥B—CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.
记等差数列{}的前n项和为,已知,. (Ⅰ)求数列{}的通项公式; (Ⅱ)令,求数列{}的前项和.
一种放射性元素,最初的质量为500g,按每年10﹪衰减. (Ⅰ)求t年后,这种放射性元素质量ω的表达式; (Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)
已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.
已知抛物线:,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为. (1)当时,求椭圆的标准方程; (2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.