2010年高考试题分项版文科数学之专题十三 导数
设定函数
,且方程
的两个根分别为1,4。
(Ⅰ)当
且曲线
过原点时,求
的解析式;
(Ⅱ)若
在
无极值点,求
的取值范围。
已知函数
的图像在点
处的切线方程为
.
(Ⅰ)求实数
的值;
(Ⅱ)设
是
上的增函数.
(ⅰ)求实数
的最大值;
(ⅱ)当
取最大值时,是否存在点Q,使得过点Q的直线能与曲线
围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由.
已知函数
。
(I)当
时,求曲线
在点
处的切线方程。
(II)设
是
的两个极值点,
是
的一个零点,且
,证明:存在实数
,使得
按某种顺序排列后的等差数列,并求
.
已知函数 .
(Ⅰ)设
,求
的单调期间;
(Ⅱ)设
在区间
中至少有一个极值点,求
的取值范围.
已知函数
其中
,且
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)设函数
(
是自然数的底数)。是否存在
,使
在
上为减函数?若存在,求
的取值范围;若不存在,请说明理由。
已知函数
(其中常数
),
是奇函数.
(Ⅰ)求
的表达式;
(Ⅱ)讨论
的单调性,并求
在区间[1,2]上的最大值和最小值.
已知抛物线 ,过其焦点且斜率为1的直线交抛物线与 两点,若线段 的中点的纵坐标为2,则该抛物线的准线方程为( )
A. |
|
B. |
|
C. |
|
D. |
|
设函数 ,其中 ,曲线 在点 处的切线方程为 .
(Ⅰ)确定
的值.
(Ⅱ)设曲线
在点(
)及(
)处的切线都过点(0,2)证明:当
时,
.
(Ⅲ)若过点(0,2)可作曲线 的三条不同切线,求 的取值范围.
已知函数
.
(Ⅰ)若曲线
与曲线
相交,且在交点处有相同的切线,求
的值及该切线的方程;
(Ⅱ)设函数
,当
存在最小值时,求其最小值
的解析式;
(Ⅲ)对(Ⅱ)中的
,证明:当
时,
.