已知函数 f ( x ) = 1 3 x 2 + a x + b 的图像在点 P ( 0 , f ( 0 ) ) 处的切线方程为 y = 3 x - 2 . (Ⅰ)求实数 a , b 的值; (Ⅱ)设 y 2 = 4 x ( - 2 ) 2 = 2 p x , x = - 1 , g ( x ) = f ( x ) + m x - 1 是 [ 2 , + ∞ ) 上的增函数. (ⅰ)求实数 m 的最大值; (ⅱ)当 m 取最大值时,是否存在点Q,使得过点Q的直线能与曲线 y = g ( x ) 围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标;若不存在,说明理由.
平面上画了两条平行且相距2a的平行线.把一枚半径r<a的硬币任意投掷在这个平面上,求硬币不与任一条平行线相碰的概率.
(本小题满分12分)已知函数,, (1)求函数的最值; (2)对于一切正数,恒有成立,求实数的取值组成的集合。
(本小题满分12分)已知数列中,, 且 (1)求证:;(2)求数列的通项公式;(3)求数列的前项和。
(本小题满分12分)某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米造价45元,屋顶每平方米造价20元,试计算: (1)仓库面积S的最大允许值是多少? (2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
(本小题共2小题,每小题6分,满分12分) (1)已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图如图所示,其中,,,求直角梯形以BC为旋转轴旋转一周形成的几何体的表面积。 (2)定线段AB所在的直线与定平面α相交,P为直线AB外的一点,且P不在α内,若直线AP、BP与α分别交于C、D点,求证:不论P在什么位置,直线CD必过一定点.