已知函数 f x = a x 3 + x 2 + b x (其中常数 a , b ∈ R ), g x = f x + f ` x 是奇函数. (Ⅰ)求 f x 的表达式; (Ⅱ)讨论 g x 的单调性,并求 g x 在区间[1,2]上的最大值和最小值.
在三棱锥中,是边长为的正三角形,平面⊥平面,,、分别为、的中点. (Ⅰ)证明:⊥; (Ⅱ)求三棱锥的体积.
已知函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)设函数,求的值域.
已知为等差数列的前项和,且. (Ⅰ)求的通项公式; (Ⅱ)求数列的前项和.
已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值; (Ⅱ)求的单调区间; (Ⅲ)设,若对任意,均存在,使得<,求的取值范围.
设椭圆:的左、右焦点分别是、,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过、两点. (Ⅰ)求椭圆的方程; (Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.