(本小题满分12分) 己知圆C: (x – 2 )2 + y 2 =" 9," 直线l:x + y = 0. (1) 求与圆C相切, 且与直线l平行的直线m的方程; (2) 若直线n与圆C有公共点,且与直线l垂直,求直线n在y轴上的截距b的取值范围;
已知函数 (Ⅰ)若有两个极值点,求实数的取值范围; (Ⅱ)当时,讨论函数的零点个数.
设数列满足. (Ⅰ)求,并由此猜想的一个通项公式,证明你的结论; (II)若,不等式对一切都成立,求正整数m的最大值。
已知函数. (I)若,求在处的切线方程; (II)求在区间上的最小值.
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球 (Ⅰ)求取出的3个球中至少有一个红球的概率; (Ⅱ)求取出的3个球得分之和恰为1分的概率; (Ⅲ)设为取出的3个球中白色球的个数,求的分布列.
已知,且展开式的各式系数和为243. (I)求a的值。 (II)若,求中含的系数。