设定函数 f ( x ) = a 3 x 3 + b x 2 + c x + d ( a > 0 ) ,且方程 f ` ( x ) - 9 x = 0 的两个根分别为1,4。 (Ⅰ)当 a = 3 且曲线 y = f ( x ) 过原点时,求 f ( x ) 的解析式; (Ⅱ)若 f ( x ) 在 ( - ∞ , + ∞ ) 无极值点,求 a 的取值范围。
如图所示,正方形和矩形所在平面相互垂直,是的中点.(I)求证:;(Ⅱ)若直线与平面成45o角,求异面直线与所成角的余弦值.
(本小题满分16分,每小题8分) 解下列不等式:(1) ; (2) log73x < log7(x2-4).
(本小题满分14分)已知函数f(x)=log2.(1)判断并证明f(x)的奇偶性;(2)若关于x的方程f(x)=log2(x-k)有实根,求实数k的取值范围;(3)问:方程f(x)=x+1是否有实根?如果有,设为x0,请求出一个长度为的区间(a,b),使x0∈(a,b);如果没有,请说明理由.(注:区间(a,b)的长度为b-a)
(本小题满分12分)已知集合A={x|log2(x-1)<1},集合B={x|x2-ax+b<0,a,b∈R}.(1)若A=B,求a,b的值;(2)若b=3,且A∪B=A,求a的取值范围.
(本小题满分12分)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2).(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.