(本小题满分13分)函数的部分图象如下图所示,该图象与轴交于点,与轴交于点,为最高点,且的面积为.(Ⅰ)求函数的解析式;(Ⅱ),求的值.(Ⅲ)将函数的图象的所有点的横坐标缩短到原来的倍(纵坐标不变),再向左平移个单位,得函数的图象,若函数为奇函数,求的最小值.
在中,,,,求角、边及的面积.
解下列不等式: (1);(2) .
已知函数满足, 且对于任意恒有成立。 (1) 求实数的值; (2)设若存在实数,当时,恒成立,求实数的最大值。
我市某蔬菜种植户计划建造一个室内面积为800的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地(如图),中间部分种植蔬菜。 (1)当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少? (2)由于受地形条件的限制,矩形温室的边长不得少于25,则蔬菜的最大种植面积是多少?
已知不等式的解集为,不等式的解集为,. (1)求集合; (2)若,求实数的取值范围; (3)若存在,使得不等式成立, 求实数的取值范围.