初中数学

在等边 ΔABC 中, AB = 6 BD AC ,垂足为 D ,点 E AB 边上一点,点 F 为直线 BD 上一点,连接 EF

(1)将线段 EF 绕点 E 逆时针旋转 60 ° 得到线段 EG ,连接 FG

①如图1,当点 E 与点 B 重合,且 GF 的延长线过点 C 时,连接 DG ,求线段 DG 的长;

②如图2,点 E 不与点 A B 重合, GF 的延长线交 BC 边于点 H ,连接 EH ,求证: BE + BH = 3 BF

(2)如图3,当点 E AB 中点时,点 M BE 中点,点 N 在边 AC 上,且 DN = 2 NC ,点 F BD 中点 Q 沿射线 QD 运动,将线段 EF 绕点 E 顺时针旋转 60 ° 得到线段 EP ,连接 FP ,当 NP + 1 2 MP 最小时,直接写出 ΔDPN 的面积.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在建筑物 AB 左侧距楼底 B 点水平距离150米的 C 处有一山坡,斜坡 CD 的坡度(或坡比)为 i = 1 : 2 . 4 ,坡顶 D BC 的垂直距离 DE = 50 米(点 A B C D E 在同一平面内),在点 D 处测得建筑物顶 A 点的仰角为 50 ° ,则建筑物 AB 的高度约为 (    )

(参考数据: sin 50 ° 0 . 77 cos 50 ° 0 . 64 tan 50 ° 1 . 19 )

A.

69.2米

B.

73.1米

C.

80.0米

D.

85.7米

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,相邻两个山坡上,分别有垂直于水平面的通信基站 MA ND .甲在山脚点 C 处测得通信基站顶端 M 的仰角为 60 ° ,测得点 C 距离通信基站 MA 的水平距离 CB 30 m ;乙在另一座山脚点 F 处测得点 F 距离通信基站 ND 的水平距离 FE 50 m ,测得山坡 DF 的坡度 i = 1 : 1 . 25 .若 ND = 5 8 DE ,点 C B E F 在同一水平线上,则两个通信基站顶端 M 与顶端 N 的高度差为(参考数据: 2 1 . 41 3 1 . 73 ) (    )

A.

9 . 0 m

B.

12 . 8 m

C.

13 . 1 m

D.

22 . 7 m

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图 2 ) ,则图1中所标注的 d 的值为   ;记图1中小正方形的中心为点 A B C ,图2中的对应点为点 A ' B ' C ' .以大正方形的中心 O 为圆心作圆,则当点 A ' B ' C ' 在圆内或圆上时,圆的最小面积为   

来源:2021年浙江省温州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

图1是第七届国际数学教育大会 ( ICME ) 会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形 OABC .若 AB = BC = 1 AOB = α ,则 O C 2 的值为 (    )

A.

1 sin 2 α + 1

B.

sin 2 α + 1

C.

1 cos 2 α + 1

D.

cos 2 α + 1

来源:2021年浙江省温州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AB = AD = 20 BC = DC = 10 2

(1)求证: ΔABC ΔADC

(2)当 BCA = 45 ° 时,求 BAD 的度数.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆 AB 垂直于地面 l ,活动杆 CD 固定在支撑杆上的点 E 处.若 AED = 48 ° BE = 110 cm DE = 80 cm ,求活动杆端点 D 离地面的高度 DF .(结果精确到 1 cm ,参考数据: sin 48 ° 0 . 74 cos 48 ° 0 . 67 tan 48 ° 1 . 11 )

来源:2021年浙江省台州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,将长、宽分别为 12 cm 3 cm 的长方形纸片分别沿 AB AC 折叠,点 M N 恰好重合于点 P .若 α = 60 ° ,则折叠后的图案(阴影部分)面积为 (    )

A.

( 36 - 6 3 ) c m 2

B.

( 36 - 12 3 ) c m 2

C.

24 c m 2

D.

36 c m 2

来源:2021年浙江省台州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

拓展小组研制的智能操作机器人,如图1,水平操作台为 l ,底座 AB 固定,高 AB 50 cm ,连杆 BC 长度为 70 cm ,手臂 CD 长度为 60 cm .点 B C 是转动点,且 AB BC CD 始终在同一平面内.

(1)转动连杆 BC ,手臂 CD ,使 ABC = 143 ° CD / / l ,如图2,求手臂端点 D 离操作台 l 的高度 DE 的长(精确到 1 cm ,参考数据: sin 53 ° 0 . 8 cos 53 ° 0 . 6 )

(2)物品在操作台 l 上,距离底座 A 110 cm 的点 M 处,转动连杆 BC ,手臂 CD ,手臂端点 D 能否碰到点 M ?请说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, BAC = 90 ° cos B = 1 4 ,点 D 是边 BC 的中点,以 AD 为底边在其右侧作等腰三角形 ADE ,使 ADE = B ,连结 CE ,则 CE AD 的值为 (    )

A.

3 2

B.

3

C.

15 2

D.

2

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面 CE 与地面平行,支撑杆 AD BC 可绕连接点 O 转动,且 OA = OB ,椅面底部有一根可以绕点 H 转动的连杆 HD ,点 H CD 的中点, FA EB 均与地面垂直,测得 FA = 54 cm EB = 45 cm AB = 48 cm

(1)椅面 CE 的长度为    cm

(2)如图3,椅子折叠时,连杆 HD 绕着支点 H 带动支撑杆 AD BC 转动合拢,椅面和连杆夹角 CHD 的度数达到最小值 30 ° 时, A B 两点间的距离为    cm (结果精确到 0 . 1 cm )

(参考数据: sin 15 ° 0 . 26 cos 15 ° 0 . 97 tan 15 ° 0 . 27 )

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄 AP 始终平分同一平面内两条伞骨所成的角 BAC ,且 AB = AC ,从而保证伞圈 D 能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈 D 已滑动到点 D ' 的位置,且 A B D ' 三点共线, AD ' = 40 cm B AD ' 中点.当 BAC = 140 ° 时,伞完全张开.

(1)求 AB 的长.

(2)当伞从完全张开到完全收拢,求伞圈 D 沿着伞柄向下滑动的距离.

(参考数据: sin 70 ° 0 . 94 cos 70 ° 0 . 34 tan 70 ° 2 . 75 )

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, B = 45 ° C = 60 ° AD BC 于点 D BD = 3 .若 E F 分别为 AB BC 的中点,则 EF 的长为 (    )

A.

3 3

B.

3 2

C.

1

D.

6 2

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD OA 于点 E ,连结 OC OD .若 O 的半径为 m AOD = α ,则下列结论一定成立的是 (    )

A.

OE = m tan α

B.

CD = 2 m sin α

C.

AE = m cos α

D.

S ΔCOD = 1 2 m 2 sin α

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

初中数学锐角三角函数试题