拓展小组研制的智能操作机器人,如图1,水平操作台为 l ,底座 AB 固定,高 AB 为 50 cm ,连杆 BC 长度为 70 cm ,手臂 CD 长度为 60 cm .点 B , C 是转动点,且 AB , BC 与 CD 始终在同一平面内.
(1)转动连杆 BC ,手臂 CD ,使 ∠ ABC = 143 ° , CD / / l ,如图2,求手臂端点 D 离操作台 l 的高度 DE 的长(精确到 1 cm ,参考数据: sin 53 ° ≈ 0 . 8 , cos 53 ° ≈ 0 . 6 ) .
(2)物品在操作台 l 上,距离底座 A 端 110 cm 的点 M 处,转动连杆 BC ,手臂 CD ,手臂端点 D 能否碰到点 M ?请说明理由.
如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F. (1)求证:△ABF≌△ECF; (2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.
某校部分男生分3组进行引体向上训练.对训练前后的成绩进行统计分析,相应数据的统计图如下. (1)求训练后第一组平均成绩比训练前增长的百分数; (2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占该组人数的50%,所以第二组的平均成绩不可能提高3个这么多.”你同意小明的观点吗?请说明理由; (3)你认为哪一组的训练效果最好?请提供一个解释来支持你的观点.
解方程x2﹣4x+1=0.
解不等式组,并写出不等式组的整数解.
如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为y=-x+,点A、D的坐标分别为(-4,0),(0,4).动点P自A点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外). (1)求出点B、C的坐标; (2)求s随t变化的函数关系式; (3)当t为何值时s有最大值?并求出最大值.