已知抛物线方程 , 为焦点, 为抛物线准线上一点, 为线段 与抛物线的交点,定义: .
(1)当 时,求 ;
(2)证明:存在常数 ,使得 ;
(3) , , 为抛物线准线上三点,且 ,判断 与 的关系.
在椭圆 上任意一点 , 与 关于 轴对称,若有 ,则 与 的夹角范围为________.
设椭圆 的左焦点为 ,上顶点为 .已知椭圆的短轴长为4,离心率为 .
(Ⅰ)求椭圆的方程;
(Ⅱ)设点 在椭圆上,且异于椭圆的上、下顶点,点 为直线 与 轴的交点,点 在 轴的负半轴上.若 ( 为原点),且 ,求直线 的斜率.
已知抛物线
的焦点为
,准线为
,若
与双曲线
的两条渐近线分别交于点
和点
,且
(
为原点),则双曲线的离心率为( )
| A. |
|
B. |
|
C. |
|
D. |
|
已知椭圆 的右焦点为 ,且经过点 .
(Ⅰ)求椭圆 C的方程;
(Ⅱ)设 O为原点,直线 与椭圆 C交于两个不同点 P, Q,直线 与 x轴交于点 M,直线 与 x轴交于点 N,若 ,求证:直线 l经过定点.
设抛物线 的焦点为 ,准线为 .则以 为圆心,且与 相切的圆的方程为__________.
在平面直角坐标系 中,椭圆 的离心率为 ,焦距为2.
(Ⅰ)求椭圆E的方程.
(Ⅱ)如图,该直线 交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为 , 且看 ,M是线段OC延长线上一点,且 ,⊙M的半径为 ,OS,OT是⊙M的两条切线,切点分别为S,T,求 的最大值,并求取得最大值时直线l的斜率.

在平面直角坐标系 中,双曲线 的右支与焦点为F的抛物线 交于A,B两点,若 ,则该双曲线的渐近线方程为________.
已知椭圆 C: , 的左、右顶点分别为 , ,且以线 为直径的圆与直线 相切,则 C的离心率为( )
| A. |
|
B. |
|
C. |
|
D. |
|
如图,在平面直角坐标系xOy中,椭圆C:
的焦点为F 1(-1、0),F 2(1,0).过F 2作x轴的垂线l ,在x轴的上方,l与圆F 2:
交于点A ,与椭圆C交于点D.连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C于点E ,连结DF 1.已知DF 1=
.

(1)求椭圆 C的标准方程;
(2)求点 E的坐标.