如图,在平面直角坐标系xOy中,椭圆C: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的焦点为F 1(-1、0),F 2(1,0).过F 2作x轴的垂线l ,在x轴的上方,l与圆F 2: ( x - 1 ) 2 + y 2 = 4 a 2 交于点A ,与椭圆C交于点D.连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C于点E ,连结DF 1.已知DF 1= 5 2 .
(1)求椭圆 C的标准方程;
(2)求点 E的坐标.
已知曲线的参数方程是,直线的参数方程为,(1)求曲线与直线的普通方程;(2)若直线与曲线相交于两点,且,求实数的值。
(本小题满分14分)已知函数(Ⅰ)当时,求函数的单调区间;(Ⅱ)时,令.求在上的最大值和最小值;(Ⅲ)若函数对恒成立,求实数的取值范围.
(本小题满分13分)某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率与日产量(万件)之间满足关系:(其中为小于6的正常数)(注:次品率=次品数/生产量,如表示每生产10件产品,有1件为次品,其余为合格品)已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(Ⅰ)试将生产这种仪器的元件每天的盈利额(万元)表示为日产量(万件)的函数;(Ⅱ)当日产量为多少时,可获得最大利润?
(本小题满分12分)已知函数的定义域为,若对于任意的,都有,且当时,有.(Ⅰ)证明:为奇函数;(Ⅱ)判断在上的单调性,并证明;(Ⅲ)设,若(且)对恒成立,求实数的取值范围.
(本小题满分12分) 已知函数f(x)=2x3+ax2+bx+3在x=-1和x=2处取得极值. (Ⅰ)求f(x)的表达式和极值; (Ⅱ)若f(x)在区间[m,m+4]上是单调函数,试求m的取值范围.