如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD分别与AE、AF相交于G、H.
(1)在图中找出与△ABE相似的三角形,并说明理由;
(2)若AG=AH,求证:四边形ABCD是菱形.
在拖拉机油箱中,盛满56千克油,拖拉机工作时,每小时平均耗油6千克,求邮箱里剩下Q(千克)与拖拉机的工作时间t(小时)之间的函数关系式.
已知一次函数的图象a过点M(-1,-4.5),N(1,-1.5)
(1)求此函数解析式,并画出图象;
(2)求出此函数图象与x轴、y轴的交点A、B的坐标;
(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.
如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=
的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.
(1)求一次函数与反比例的解析式;
(2)直接写出当x<0时,kx+b﹣
>0的解集.
如图1,在平面直角坐标系中,
为坐标原点.直线
与抛物线
同时经过
.
(1)求
的值.
(2)点
是二次函数图象上一点,(点
在
下方),过
作
轴,与
交于点
,与
轴交于点
.求
的最大值.
(3)在(2)的条件下,是否存在点
,使
和
相似?若存在,求出
点坐标,不存在,说明理由.
如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.
求证:△ABC≌△DEF;
(本题8分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABO的三个顶点都在格点上.
(1)以O为原点建立直角坐标系,点B的坐标为(-3,1),则点A的坐标为;
(2)画出△ABO绕点O顺时针旋转90°后的△OA1B1,并求线段OA扫过的面积.
如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=AB•AD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求
的值.
如图所示,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=
.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.