如图,一次函数y=kx+b的图象与坐标轴分别交于A,B两点,与反比例函数y=的图象在第二象限的交点为C,CD⊥x轴,垂足为D,若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当x<0时,kx+b﹣>0的解集.
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.
求证:有一条直角边及斜边上的高对应相等的两个直角三角形全等.
如图,OB⊥AB,OC⊥AC,垂足为B,C,OB=OC,AO平分∠BAC吗?为什么?
已知:如图,Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°试判断CF和EF的关系,并说明你的理由.
如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.