初中数学

下列函数:①;②;③;④,y随x的增大而减小的函数有(  )

A.1个 B.2个 C.3个 D.4个
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正比例函数与反比例函数相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且.过点A的一次函数与反比例函数的图象交于另一点C,与x轴交于点E(5,0).
(1)求正比例函数、反比例函数和一次函数的解析式;
(2)结合图象,求出当的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图.在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为(  )

A.
B.
C.
D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

将一张矩形纸片沿对角线剪开(如图1),得到两张三角形纸片(如图2),量得他们的斜边长为 6cm,较小锐角为30° ,再将这两张三角纸片摆成如图3的形状,且点 A、C、E、F 在同一条直线上,点 C 与点 E 重合, 保持不动,OB 为的中线,现对纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的沿CA向右平移,直到两个三角形完全重合为止.设平移距离 CE 为 x(即 CE 的长),求平移过程中,重叠部分的面积 S 与 x 的函数关系式,以及自变量的取值范围;
(2) 平移到 E 与O 重合时(如图4),将绕点 O 顺时针旋转,旋转过程中的斜边 EF交的 BC 边于 G,求点 C、O、G构成等腰三角形时,的面积;
(3)在(2)的旋转过程中, 的边 DE,EF分别交线段BC于点 G、H(不与端点重合).求旋转角为多少度时,线段BH、GH、CG之间满足 , 请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在同一直角坐标系中,正比例函数 y = k 1 x 的图象与反比例函数 y = k 2 x 的图象有公共点,则 k 1 k 2 0(填">"、"="或"<").

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).
(1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);
(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;
(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系.

图a                    图b

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在一条直线上依次有ABC三个港口,甲、乙两船同时分别从AB港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为(km),x的函数关系如图所示.

(1)填空:AC两港口间的距离为    km,   
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

函数y=k(x-1)的图象向左平移一个单位后与反比例函数y=的图象的交点为A、B,若A点坐标为(1,2),则B点的坐标为___▲___.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,)可以由E(x,)怎样平移得到?

A.向上平移1个单位 B.向下平移1个单位
C.向左平移1个单位 D.向右平移1个单位
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t天完成.
(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(t>4)之间的函数关系式;
(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

●探究   (1) 在图1中,已知线段AB,CD,其中点分别为E,F.

①若A (-1,0), B (3,0),则E点坐标为__________;
②若C (-2,2), D (-2,-1),则F点坐标为__________;
(2)在图2中,已知线段AB的端点坐标为A(a,b) ,B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.

●归纳 无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d), AB中点为D(x,y) 时,x=_________,y=___________.(不必证明)
●运用 在图3中,一次函数与反比例函数的图象交点为A,B.

①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,是张老师出门散步时离家的距离与时间之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是
 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x之间的函数关系对应的图象大致为

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费.
(1)设纪念册的册数为x,甲公司收费用表示,乙公司收费用表示,分别写出两家公司的收费与纪念册册数的关系;
(2)当纪念册的册数是多少时,两家公司的收费是一样的?
(3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司?(就纪念册的册数讨论)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若正比例函数的图象经过点(,2),则这个图象必经过点(   ).

A.(1,2) B.( C.(2, D.(1,
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学四种命题及其关系试题