如图,正方形ABCD中,以BC为直径作半圆,BC=2㎝.现有两动点E、F,分别从点B、点A同时出发,点E沿线段BA以/秒的速度向点A运动,点F沿折线A→D→C以/秒的速度向点C运动.当点E到达A点时,E、F同时停止运动,设点E运动时间为.
(1)当为何值时,线段EF与BC平行?
(2)设,当为何值时,EF与半圆相切?
(3)如图2,将图形放在直角坐标系中,当时,设EF与AC相交于点P,双曲线经过点P,并且与边AB交于点H,求出双曲线的函数关系式,并直接写出的值.
如图,CD是⊙O的直径,且CD=2㎝,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为A、B.
(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;
(2)填空:①当DP= 时,四边形AOBD是菱形;
②当DP= 时,四边形PAOB是正方形.
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=时,求⊙O的半径.
对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.
(1)当r=时,
①在P1(0,-3),P2(4,6),P3(,2)中可以成为正方形ABCD的“等距圆”的圆心的是_______________;
②若点P在直线上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为_______________;
(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.
①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P 在y轴上截得的弦长;
②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是_______________ .
如图1,在平面直角坐标系中,直线的位置随b的不同取值而变化.
(1)已知⊙M的圆心坐标为(4,2),半径为2,
①当b= 时,直线经过圆心M ;
②当b= 时,直线与 ⊙M相切;
(2)若把⊙M换成矩形ABCD,如图2,其三个顶点的坐标分别为:A(2,0),B(6,0),C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.
问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?
初步思考:设不在同一条直线上的三点A、B、C确定的圆为⊙O.
(1)当C、D在线段AB的同侧时,
如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是____________;
如图②,若点D在⊙O内,此时有∠ACB____________∠ADB;
如图③,若点D在⊙O外,此时有∠ACB____________∠ADB.(填“=”、“>”或“<”);
由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:____________.
类比学习:(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.
如图④,此时有________________________,
如图⑤,此时有________________________,
如图⑥,此时有________________________.
由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:
________________________________________________________________________.
拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线?
已知:如图,AB是⊙O的直径,点C在⊙O上.
求作:CN⊥AB.
作法:①连接CA, CB;
②在上任取异于B、C的一点D,连接DA,DB;
③DA与CB相交于E点,延长AC、BD,交于F点;
④连接F、E并延长,交直径AB于M;
⑤连接D、M并延长,交⊙O于N.连接CN.则CN⊥AB.
请按上述作法在图④中作图,并说明CN⊥AB的理由.(提示:可以利用(2)中的结论)
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1)求证:AC是⊙O的切线;
(2)已知AB=10,BC=6,求⊙O的半径r.
如图,以坐标原点O为圆心的圆弧交y轴于点A(0,5),交x轴于点B,正方形CDEF内接于扇形AOB(其中C在y轴上、D在x轴上,E、F在上),则正方形CDEF的边长为 ( )
A.3 | B. | C. | D.以上都不正确 |
如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为,OP=1.求BC的长.
如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.
(1)判断直线BC与⊙O的位置关系,并说明理由;
(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)
如图,在平面直角坐标系中,O为坐标原点,⊙O的半径为5,点B的坐标为(3,0),点A为⊙O上一动点,当∠OAB取最大值时,点A的坐标为 .
(1)数学爱好者小森偶然阅读到这样一道竞赛题:
一个圆内接六边形ABCDEF,各边长度依次为 3,3,3,5,5, 5,求六边形ABCDEF的面积.
小森利用“同圆中相等的弦所对的圆心角相等”这一数学原理,将六边形进行分割重组,得到图③.可以求出六边形ABCDEF的面积等于 .
(2)类比探究:一个圆内接八边形,各边长度依次为2,2,2,2,3,3,3,3.求这个八边形的面积.
请你仿照小森的思考方式,求出这个八边形的面积.
如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(6,0),B(3,),C(1,),动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路运动,运动速度为每秒1个单位,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒).
(1)经过A、B、C三点的抛物线的解析式的对称轴为 .
(2)设经过A、B、C三点的抛物线的对称轴与直线OB的交点为M,线段PQ是否能经过点M,若能请求出t的值(或t的取值范围),若不能,请说明理由.
(3)当Q在BC上运动时,以线段PQ为直径的圆能否与直线AB相切?若能请求出t的值,若不能,请说明理由.