如图1,在平面直角坐标系中,直线的位置随b的不同取值而变化.(1)已知⊙M的圆心坐标为(4,2),半径为2,①当b= 时,直线经过圆心M ;②当b= 时,直线与 ⊙M相切;(2)若把⊙M换成矩形ABCD,如图2,其三个顶点的坐标分别为:A(2,0),B(6,0),C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.
为了了解业余射击队队员的射击成绩,对某次射击比赛中每一名队员的平均成绩(单位:环,环数为整数)进行了统计.分别绘制了如下统计表和成绩分布直方图,请你根据统计表和成绩分布直方图回答下列问题:
(1)参加这次射击比赛的队员有多少名? (2)这次射击比赛平均成绩的中位数落在成绩分布直方图的哪个小组内? (3)这次射击比赛平均成绩的众数落在成绩分布直方图的哪个小组内?
已知=2+,=2-,求的值.
用适当的方法解下列方程: (1) (2)
如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
已知:甲、乙两车分别从相距300千米的两地同时出发相向而行,其中甲到地后立即返回,下图是它们离各自出发地的距离(千米)与行驶时间(小时)之间的函数图象. (1)求甲车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式,并写出自变量的取值范围; (2)当它们行驶到与各自出发地的距离相等时,用了小时,求乙车离出发地的距离(千米)与行驶时间(小时)之间的函数关系式; (3)在(2)的条件下,求它们在行驶的过程中相遇的时间.