如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,AG=,求EB的长.
(本题7分)已知实数x、y满足,求6x-y的平方根
因式分解(每小题6分,共18分):26. (1) (2) (3)
计算(每小题6分,共18分):24. (1) (2) (3)化简求值:,其中
如图所示,将矩形沿折叠,使点恰好落在上处,以为边作正方形,延长至,使,再以、为边作矩形.(1).试比较、的大小,并说明理由.(2).令,请问是否为定值?若是,请求出的值;若不是,请说明理由.为定值.(3).在(2)的条件下,若为上一点且,抛物线经过、两点,请求出此抛物线的解析式.(4).在(3)的条件下,若抛物线与线段交于点,试问在直线上是否存在点,使得以、、为顶点的三角形与相似?若存在,请求直线与轴的交点的坐标;若不存在,请说明理由.
已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1).请说明图中①、②两段函数图象的实际意义;(2).写出批发该种水果的资金金额w(元)与批发量n(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3).经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.