如图所示,将矩形沿折叠,使点恰好落在上处,以为边作正方形,延长至,使,再以、为边作矩形.(1).试比较、的大小,并说明理由.(2).令,请问是否为定值?若是,请求出的值;若不是,请说明理由.为定值.(3).在(2)的条件下,若为上一点且,抛物线经过、两点,请求出此抛物线的解析式.(4).在(3)的条件下,若抛物线与线段交于点,试问在直线上是否存在点,使得以、、为顶点的三角形与相似?若存在,请求直线与轴的交点的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2;(3)△OB2P为等腰三角形,且P在x轴上,请直接写出所有符合条件的P点坐标.
选择适当的方法解一元二次方程:(1)x2+2x﹣15=0(2)4x﹣6=(3﹣2x)x.
已知抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点,直线L是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求抛物线的顶点坐标;(3)设P点是直线L上的一个动点,当△PAC的周长最小时,求点P的坐标.
已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题: (1)BC= cm; (2)当t为多少时,四边形PQCD成为平行四边形? (3)当t为多少时,四边形PQCD为等腰梯形? (4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.