初中数学

如图,已知直线AB分别交x轴、y轴于点A(﹣4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0<t<5).
(1)证明:在运动过程中,四边形ACDP总是平行四边形;
(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本
和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.
(1)请写出y关于x的关系式;
(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?
(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?

 
A
B
成本(元)
50
35
利润(元)
20
15

 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).
(1)求点D的坐标.
(2)求直线BC的解析式.
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在等腰梯形ABCO中,ABCOEAO的中点,过点EEFOCBCFAO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OCx轴正半轴上,点AB在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点PPMEFOC于点M,过MMNAO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为EDGH′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形EDGH′重合部分的面积y与时间t的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,tan∠ABO=
(1)求点A,C的坐标;
(2)若反比例函数y=的图象经过点E,求k的值;
(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系xOy中,等腰直角△AOB的斜边OB在x上,顶点A的坐标为(3,3).
(1)求直线OA的解析式;
(2)如图2,如果点P是x轴正半轴上的一个动点,过点P作PC∥y轴,交直线OA于点C,设点P的坐标为(m,0),以A、C、P、B为顶点的四边形面积为S,求S与m之间的函数关系式;
(3)如图3,如果点D(2,a)在直线AB上. 过点O、D作直线OD,交直线PC于点E,在CE的右侧作矩形CGFE,其中CG=,请你直接写出矩形CGFE与△AOB重叠部分为轴对称图形时m的取值范围.

图1                     图2                       图3

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在等腰△ABC中,AB=AC=5,BC=6,点D为BC边上一动点(不与点B重合),过D作射线DE交AB边于E,使∠BDE=∠A,以D为圆心、DC的长为半径作⊙D.
(1)设BD=x,AE=y,求y关于x的函数关系式,并写出定义域.
(2)当⊙D与AB边相切时,求BD的长.
(3)如果⊙E是以E为圆心,AE的长为半径的圆,那么当BD的长为多少时,⊙D与⊙E相切?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4)2≥0,
(1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标;
(2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线、线段分别表示甲、乙两车所行路程(千米)与时间(小时)之间的函数关系对应的图象(线段表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:

(1)求乙车所行路程与时间的函数关系式;
(2)求两车在途中第二次相遇时,它们距出发地的路程;
(3)乙车出发多长时间,甲、乙两车相距80千米?(写出解题过程)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如下图:

李明从家出发到出现故障时的速度为         米/分钟;
李明修车用时           分钟;
求线段BC所对应的函数关系式(不要求写出自变量的取值范围).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.

(1)求点A和点C的坐标;
(2)当0<t<30时,求m关于t的函数关系式;
(3)当m=35时,请直接写出t的值;
(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形OABC摆放在平面直角坐标系xOy中,点A在x轴上,点C在y轴上,OA=3,OC=2,P是BC边上一点且不与B重合,连结AP,过点P作∠CPD=∠APB,交x轴于点D,交y轴于点E,过点E作EF∥AP交x轴于点F.
(1)若△APD为等腰直角三角形,求点P的坐标;
(2)若以A,P,E,F为顶点的四边形是平行四边形,求直线PE的解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(黄石)已知双曲线),直线k<0)过定点F且与双曲线交于A,B两点,设A(),B()(),直线

(1)若,求△OAB的面积S;
(2)若AB=,求k的值;
(3)设N(0,),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.(参考公式:在平面直角坐标系中,若A(),B()则A,B两点间的距离为AB=

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

直线与x轴交于点A,与y轴交于点B,菱形ABCD如图放置在平面直角坐标系中,其中点D在x轴负半轴上,直线y=x+m经过点C,交x轴于点E.
①请直接写出点C、点D的坐标,并求出m的值;
②点P(0,t)是线段OB上的一个动点(点P不与O、B重合),经过点P且平行于x轴的直线交AB于M、交CE于N.设线段MN的长度为d,求d与t之间的函数关系式(不要求写自变量的取值范围);
③点P(0,t)是y轴正半轴上的一个动点,为何值时点P、C、D恰好能组成一个等腰三角形?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.
(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;
(2)求自变量x的取值范围;
(3)怎样安排生产,每天获得的利润最大,最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题