某酒厂生产A,B两种品牌的酒,每天两种酒共生产700瓶,每种酒每瓶的成本和利润如下表所示,设每天共获利y元,每天生产A种品牌的酒x瓶.(1)请写出y关于x的关系式;(2)如果该厂每天至少投入成本30000元,那么每天至少获利多少元?(3)要使每天的利润率最大,应生产A,B两种酒各多少瓶?
【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM. 【探究展示】 (1)证明:AM=AD+MC; (2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由. 【拓展延伸】 (3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
操作发现 将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合. 问题解决 将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②. (1)求证:AD∥BF; (2)若AD=2,求AB的长.
如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E在AC上,且AE=CE。 (1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。 ①作∠DAC的平分线AM。②连接BE并延长交AM于点F。 (2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。
如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点. (1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法). ①作∠DAC的平分线AM. ②连接BE并延长交AM于点F. (2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.
如图,在平面直角坐标系中,O为坐标原点,抛物线与x轴相交于O、B,顶点为A,连接OA. (1)求点A的坐标和∠AOB的度数; (2)若将抛物线向右平移4个单位,再向上平移2个单位,再向上翻转,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由; (3)在(2)的情况下,判断点C′是否在抛物线上,请说明理由;