如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.
(本题8分)为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:我们所在的城市大约有160万人,每天早晨起来漱口,如果大家都有一个坏习惯,漱口时都不关水龙头,那么我们每个人漱口时要浪费56毫升的水.(1)按这样计算,我们全市一天早晨要浪费多少升水?请用科学计数法表示最后的结果,并精确到千位.(2)如果我们用500毫升的纯净水瓶来装浪费的水,可以装多少瓶?
(本题8分,第1题3分,第2题5分)(1)化简:(2)先化简再求值:其中,
如图(1),边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1)当点D运动到AB的中点时,求AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半.
Rt△ABC中,AB=AC=2,∠A=90°,D为BC中点,点E,F分别在AB,AC上,且BE=AF,(1)求证:ED=FD,(2)求证:DF⊥DE,(3)求四边形AFDE的面积.
已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D做DE垂直AB于点E,(1)求AE的长;(2)求BD的长.