初中数学

如图,已知二次函数的图象过A(2,0),B(0,﹣1)和C(4,5)三点.

(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线,并写出当x在什么范围内时,一次函数的值大于二次函数的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.

(1)求二次函数的解析式;
(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

2013年5月,长江三峡国际龙舟拉力赛揭开比赛帷幕.20日上午9时,参赛龙舟从起点同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点.

(1)哪个队先到达终点?乙队何时追上甲队?
(2)在比赛过程中,甲、乙两队何时相距最远?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

明明乘出租车从游泳馆到翠岗小区,出租车行驶了4.5km。如果出租车的收费标准为:行驶路程不超过3km收费7元,超过3km的部分按每千米加1.8元收费。
(1)请帮明明用代数式表示出租车的收费m元与行驶路程skm(s>3)之间的关系;
(2)明明身上有10元钱,够不够付车费呢?说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线y=0.5x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD,过点D作DE⊥x轴,垂足为E.

(1)求点A、B的坐标,并求边AB的长;
(2)求点D的坐标;
(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数y=kx+b的图像经过点(-1.-5),且与正比例函数y=x的图象相交于点(2,m).
(1)求m的值;
(2)求一次函数y=kx+b的解析式;
(3)求这两个函数图像与x轴所围成的三角形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:

 
A型利润
B型利润
甲店
200
170
乙店
160
150

 
(1)设分配给甲店A型产品x件,这件公司卖出这100件产品的总利润W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若要求总利润不低于17560元,有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A、B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题12分)如图1,在长方形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿
A→B→C→D路线运动,到D点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:

(1)请直接写出a=         、b=         、c=         
(2)设点P离开点A的运动路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数表达式,并求出P与Q相遇时x的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题10分)已知一次函数y=kx+b的图像经过点(-1,-2),且与正比例函数y=x的图像相交于点(2,a).
(1)求a、b、k的值;
(2)在图中画出这两个函数图像,并求这两个函数图像与x轴所围成的三角形面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,直线与x轴交于点A(),与y轴的正半轴交于点
B.点C在直线上,且CA⊥x轴于点A.

(1)求点C的坐标;
(2)若点D是OA的中点,点E是y轴上一个动点,当EC+ED最小时,求此时点E的坐标;
(3)若点A恰好在BC的垂直平分线上,点F在x轴上,且△ABF是以AB为腰的等腰三角形,请直接写出所有满足条件的点F的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,一次函数的图象经过点A(),且与正比例函数的图象交于点B().

(1)求的值及一次函数的解析式;
(2)若一次函数的图象与x轴交于点C,且正比例函数的图象向下平移m(m>0)个单位长度后经过点C,求m的值;
(3)直接写出关于x的不等式的解集.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐标为2

(1)求一次函数和反比例函数的解析式;
(2)直接写出时x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为(2,3).

(1)分别求反比例函数和一次函数的表达式;
(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,请直接写出点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(12分如图,直线l1与x轴、y轴分别交于A、B两点,直线l2与直线l1关于x轴对称,已知直线l1的解析式为

(1)求直线l2的解析式;
(2)过A点在△ABC的外部作一条直线l3,过点B作BE⊥l3于E,过点C作CF⊥l3于F,请画出图形并求证:BE+CF=EF;
(3)△ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交于点M,且BP=CQ,在△ABC平移的过程中,①OM为定值;②MC为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某县为实现经济跨越,高度重视交通事业的发展.现有甲、乙两个工程队分别同时建筑两条水泥路面,所建路的长度y(m)与建筑的时间t(h)之间关系如下图所示,请根据图象提供的信息解答下列问题:

(1)乙队筑路到40m时,用了            h.筑路5h时,甲队比乙队多筑了          m.
(2)请你求出:
①甲队在的时段内,y与x的函数关系式;
②乙队在的时段内,y与x的函数关系式.
(3)筑路多长时间时,甲、乙两队筑路的长度相等.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题