如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线//BC,交直线CD于点F.将直线向右平移,设平移距离BE为 (t0),直角梯形ABCD被直线扫过的面积(图中阴影部份)为S,S关于的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
信息读取
(1)梯形上底的长AB= ;
(2) 直角梯形ABCD的面积= ;
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4) 当时,求S关于的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1: 3.
已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐
标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-+交折线O-A-B于点E.
(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;
(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;
(3)问题(2)中的四边形DMEN中,ME的长为____________.
抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.
(1)求出m的值并在右图中画出这条抛物线.
(2)求它与x轴的交点和抛物线顶点的坐标.
(3)x取值什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x的增大而减小?
已知抛物线(a≠0)的顶点在直线上,且过点A(4,0).
⑴求这个抛物线的解析式;
⑵设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OPAB为梯形?若存在,求出点B的坐标;若不存在,请说明理由.
⑶设点C(1,-3),请在抛物线的对称轴确定一点D,使的值最大,请直接写出点D的坐标.
在平面直角坐标系中,已知二次函数的图象经过点和点,直线经过抛物线的顶点且与轴垂直,垂足为.
求该二次函数的表达式;
设抛物线上有一动点从点处出发沿抛物线向上运动,其纵坐标随时间
≥)的变化规律为.现以线段为直径作.
①当点在起始位置点处时,试判断直线与的位置关系,并说明理由;在点运动的过程中,直线与是否始终保持这种位置关系? 请说明你的理由;
②若在点开始运动的同时,直线也向上平行移动,且垂足的纵坐标随时间的变化规律为,则当在什么范围内变化时,直线与相交? 此时,若直线被所截得的弦长为,试求的最大值.
如图,直线y=x-1和抛物线y=x 2+bx+c都经过点A(1,0),B(3,2).
求抛物线的解析式;
求不等式x2+bx+c<x-1的解集(直接写出答案).
设直线AB交抛物线对称轴与点D,请在对称轴上求一点P(D点除外),使△PBD为等腰三角形.(直接写出点P的坐标,不写过程
李明投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
⑴设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?⑵如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
⑶根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
如图,在平面直角坐标系xOy中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C.以直线x=1为对称轴的抛物线 ( 为常数,且≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于 ,两点,试探究 是否为定值,并写出探究过程.
如图,已知抛物线交x轴的正半轴于点A,交y轴于点B.
求直线AB的解析式;
设P(x,y)(x>0)是直线y = x上的一点,Q是OP 的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.
已知二次函数的图象与x轴有且只有一个公共点.
求该二次函数的图象的顶点坐标;
若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.
如图,平面直角坐标系中,抛物线y=-x2+3x+4与x轴交于点A、B(A在左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段BC交于点N,点P为线段BC上一个动点(与B、C不重合) .
求点A、B的坐标;
在抛物线的对称轴上找一点D,使|DC-DB|的值最大,求点D的坐标;
过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点坐标.
如图,抛物线(a0)与双曲线相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).
(1)求实数a,b,k的值;
(2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.