如图,平面直角坐标系中,抛物线y=-x2+3x+4与x轴交于点A、B(A在左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段BC交于点N,点P为线段BC上一个动点(与B、C不重合) .求点A、B的坐标;在抛物线的对称轴上找一点D,使|DC-DB|的值最大,求点D的坐标;过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点坐标.
小明在实践课中做了一个长方形模型,模型的一边长为,另一边长比它小,则此长方形的周长为多少?
先化简,再求值:,其中。
(10分)已知O为等边三角形ABD的边BD的中点,AB=4,E、F分别为射线AB、DA上一动点,且∠EOF=120°,若AF=1,求BE的长.
(12分)如图,AB=AC,AE=AF,∠BAC=∠EAF=90°,BE、CF交于M,连AM.⑴求证:BE=CF;⑵求证:BE⊥CF;⑶求∠AMC的度数.
如图,已知,EG∥AF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。并证明这个命题(只写出一种情况)①AB="AC" ②DE="DF" ③BE=CF已知:EG∥AF,_______,_________.求证:___________.证明: