如图,平面直角坐标系中,抛物线y=-x2+3x+4与x轴交于点A、B(A在左侧),与y轴交于点C,抛物线的顶点为点M,对称轴与线段BC交于点N,点P为线段BC上一个动点(与B、C不重合) .求点A、B的坐标;在抛物线的对称轴上找一点D,使|DC-DB|的值最大,求点D的坐标;过点P作PQ∥y轴与抛物线交于点Q,连接QM,当四边形PQMN满足有一组对边相等时,求P点坐标.
已知一次函数的图象过A(—2,—3),B(1,3)两点。(1)求这个一次函数的解析式(2)试判断点P(—1,1)是否在这个一次函数的图象上
解方程:
课题学习(本题10分)●探究 (1) 在图1中,已知线段AB,CD,其中点分别为E,F.①若A (-1,0), B (3,0),则E点坐标为__________;②若C (-2,2), D (-2,-1),则F点坐标为__________;(2)在图2中,已知线段AB的端点坐标为A(a,b) ,B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.●归纳 无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d), AB中点为D(x,y) 时,x=_________,y=___________.(不必证明)★●运用 在图2中,的图象x轴交于P点。一次函数与的图象交点为A,B.①求出交点A,B的坐标(用k表示);②若D为AB中点,且PD垂直于AB时,请利用上面的结论求出k的值。
如图:抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点Q(x,0)是x轴上的一动点,过Q点作x轴的垂线,交抛物线于P点、交直线BA于D点,连结OD,PB,当点Q(x,0)在x轴上运动时,求PD与x之间的函数关系式;四边形OBPD能否成为平行四边形,若能求出Q点坐标,若不能,请说明理由。(3) 是否存在一点Q,使以PD为直径的圆与y轴相切,若存在,求出Q点的坐标;若不存在,请说明理由.
如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上, CA=CD,∠ACD=120°.(1)试探究直线CD与⊙O的位置关系,并说明理由;(2)若BD为2.5,求△ACD中CD边的高.