初中数学

(本题14分)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C—B相交于点M。当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒().△MPQ的面积为S.
(1)点C的坐标为___________,直线的解析式为___________.(每空l分,共2分)
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围。
(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值。
(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线相交于点N。试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,抛物线y轴交于A点,过点A的直线与抛物线交于另一点B,过点BBCx轴,垂足为点C(3,0).
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点PPNx轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求st的函数关系式,并写出t的取值范围;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CMBN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知抛物线x轴没有交点.
(1)求c的取值范围;
(2)试确定直线经过的象限,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(太)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元)。
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中,抛物线 y = 1 2 x 2 - 2 x = 3 y 轴于点 A P 为抛物线
上一点,且与点 A 不重合.连结 A P ,以 A O A P 为邻边作 O A P Q P Q 所在直线与 x 轴交
于点 B .设点P的横坐标为 m
(1)点 Q 落在 x 轴上时 m 的值.
(3)若点 Q x 轴下方,则 m 为何值时,线段 B Q 的长取最大值,并求出这个最大值.[参考公式:二次函数 y = a x 2 + b x + c a 0 的顶点坐标为 - b 2 a 4 a c - b 2 4 a ]

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知二次函数 y = - 1 2 x 2 - x + 3 2

(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当 y < 0 时, x 的取值范围;
(3)若将此图象沿 x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知抛物线的顶点是C (0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线任意一点,过PPHx轴,垂足是H,求证:PD = PH
(3)设过原点O的直线l与抛物线在第一象限相交于AB两点,若DA=2DB,且SABD = 4,求a的值.

 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(11·珠海)如图,RtOAB中,∠OAB=90°,O为坐标原点,
OAx轴上,OAAB=1个单位长度.把RtOAB沿x轴正方向平移1个单位长度后
得△AA1B
(1)求以A为顶点,且经过点B1的抛物线的解析式;
(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点DC的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t/秒(t>0),正方形EFGH与△ABC重叠部分面积为S.
(1)当时t=1时,正方形EFGH的边长是_______.当t=3时,正方形EFGH的边长是_______
(2)当0<t≤2时,求S与t的函数关系式;
(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某农机服务站销售一批柴油,平均每天可售出20桶,每桶盈利40元.为了支援我市抗旱救灾,农机服务站决定采取降价措施.经市场调研发现:如果每桶柴油降价1元,农机服务站平均每天可多售出2桶.
(1)假设每桶柴油降价元,每天销售这种柴油所获利润为元,求之间的函数关系式;
(2)每桶柴油降价多少元后出售,农机服务站每天销售这种柴油可获得最大利润?此时,与降价前比较,每天销售这种柴油可多获利多少元?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(,0),将此平行四边形绕点0顺时针旋转90°,得到平行四边形
(1)若抛物线过点C,A,,求此抛物线的解析式;
(2)求平行四边形ABOC和平行四边形重叠部分△的周长;
(3)点M是第一象限内抛物线上的一动点,间:点M在何处时△的面积最大?最大面积是多少?并求出此时点M的坐标。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.
(1)求抛物线的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,抛物线与轴交于,0)、,0)两点,且,与轴交于点,其中是方程的两个根。
(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点,交于点,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的销售量的情况见下表:

t
1
2
3
y2
21
44
69

(1)求a、b的值;
(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?
(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题