初中数学

(本小题满分6分)
已知:二次函数y=+bx+c,其图象对称轴为直线x=1,且经过点(2,–).
(1)求此二次函数的解析式.
(2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图
象上确定一点E,使△EBC的面积最大,并求出最大面积.
注:二次函数y=x2+bx+c(≠0)的对称轴是直线x=-.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线与抛物线交于AB两点,点Ax轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点AB重合),过点Px轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点FG恰好落在y轴上时,直接写出对应的点P的坐标.
    

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,y关于x的二次函数y=﹣(x+m)(x﹣3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于D点.以AB为直径作圆,圆心为C.定点E的坐标为(﹣3,0),连接ED.(m>0)
(1)写出A、B、D三点的坐标;
(2)当m为何值时M点在直线ED上?判定此时直线与圆的位置关系;
(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的函数图象的示意图.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

2010年上半年,某种农产品受不良炒作的影响,价格一路上扬.8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价袼y元/千克与月份x呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.
(1)分别求出当1≤x≤7和7≤x≤12时,y关于x的函数关系式;
(2)2010年的12个月中.这种农产品的月平均价格哪个月最低?最低为多少?
(3)若以12个月份的月平均价格的平均数为年平均价格,月平均价格高于年平均价格的月份有哪些?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B两点(点A在点B的左侧).
(1)求抛物线的解析式;
(2)连接AC,CD,AD,试证明△ACD为直角三角形;
(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,二次函数y=mx2+(m﹣3)x﹣3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m﹣3)x﹣3(m>0)的图象于N.若只有当﹣2<n<2时,点M位于点N的上方,求这个一次函数的解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】

设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).
【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.
①填写下表,画出函数的图象;

x




1
2
3
4

y

 
 
 
 
 
 
 

②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值
【解决问题】
(2)用上述方法解决“问题情境”中的问题,直接写出答案.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数y=mx2﹣6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,梯形ABCD的底边ABx轴上,底边CD的端点Dy轴上.直线CB的表达式为y=-x+,点AD的坐标分别为(-4,0),(0,4).动点PA点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).
(1)求出点BC的坐标;
(2)求st变化的函数关系式;
(3)当t为何值时s有最大值?并求出最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,过点F(0,1)的直线y=kxb与抛物线交于M(x1
y1)和N(x2y2)两点(其中x1<0,x2<0).
⑴求b的值.
⑵求x1x2的值
⑶分别过MN作直线ly=-1的垂线,垂足分别是M1N1,判断△M1FN1的形状,并证明你的结论.
⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对
该特产的销售投资收益为:每投入x万元,可获得利润(万元).当
地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项
目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中
拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的
3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,
可获利润(万元)
⑴若不进行开发,求5年所获利润的最大值是多少?
⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
⑶根据⑴、⑵,该方案是否具有实施价值?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l2交于点K,如图所示.
(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1,抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.
(1)当n=1时,如果a=﹣1,试求b的值;
(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;
(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.
①试求当n=3时a的值;
②直接写出a关于n的关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。
己知函数 (m为常数)。
(1)当=0时,求该函数的零点;
(2)证明:无论取何值,该函数总有两个零点;
(3)设函数的两个零点分别为,且,此时函数图象与x轴的交点分
别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题