(11·珠海)如图,Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度.把Rt△OAB沿x轴正方向平移1个单位长度后得△AA1B.(1)求以A为顶点,且经过点B1的抛物线的解析式;(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.
如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=.求: : .
如图,在菱形ABCD中,AE⊥BC于E,EC=1,sinB=, 求菱形的边长和四边形AECD的周长.
若三角形三边的比是25:24:7,求最小角的正切值、正弦值和余弦值.
在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c=25,求sinA、cosA、tanA、sinB、cosB、tanB的值.
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低x元。 (1)填表(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?