如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。(1)求抛物线的解析式;(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标;(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。
以下是圆圆解不等式组 2 1 + x > - 1 ① - 1 - x > - 2 ② 的解答过程:
解:由①,得 2 + x > - 1 ,
所以 x > - 3 .
由②,得 1 - x > 2 ,
所以 - x > 1 ,
所以 x > - 1 .
所以原不等式组的解是 x > - 1 .
圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.
已知抛物线 y = - 2 x 2 + bx + c 经过点 ( 0 , - 2 ) ,当 x < - 4 时, y 随 x 的增大而增大,当 x > - 4 时, y 随 x 的增大而减小.设 r 是抛物线 y = - 2 x 2 + bx + c 与 x 轴的交点(交点也称公共点)的横坐标, m = r 9 + r 7 - 2 r 5 + r 3 + r - 1 r 9 + 60 r 5 - 1 .
(1)求 b 、 c 的值;
(2)求证: r 4 - 2 r 2 + 1 = 60 r 2 ;
(3)以下结论: m < 1 , m = 1 , m > 1 ,你认为哪个正确?请证明你认为正确的那个结论.
如图, AB 是 ⊙ O 的直径,点 C 是 ⊙ O 上异于 A 、 B 的点,连接 AC 、 BC ,点 D 在 BA 的延长线上,且 ∠ DCA = ∠ ABC ,点 E 在 DC 的延长线上,且 BE ⊥ DC .
(1)求证: DC 是 ⊙ O 的切线;
(2)若 OA OD = 2 3 , BE = 3 ,求 DA 的长.
某鲜花销售公司每月付给销售人员的工资有两种方案.
方案一:没有底薪,只付销售提成;
方案二:底薪加销售提成.
如图中的射线 l 1 ,射线 l 2 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资 y 1 (单位:元)和 y 2 (单位:元)与其当月鲜花销售量 x (单位:千克) ( x ⩾ 0 ) 的函数关系.
(1)分别求 y 1 、 y 2 与 x 的函数解析式(解析式也称表达式);
(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?
如图,四边形 ABCD 是矩形, E 、 F 分别是线段 AD 、 BC 上的点,点 O 是 EF 与 BD 的交点.若将 ΔBED 沿直线 BD 折叠,则点 E 与点 F 重合.
(1)求证:四边形 BEDF 是菱形;
(2)若 ED = 2 AE , AB ⋅ AD = 3 3 ,求 EF ⋅ BD 的值.