已知抛物线经过A(3,0), B(4,1)两点,且与y轴交于点C.(1)求抛物线的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
王老师出了一道操作探究题:已知凸四边形ABCD(如甲图)纸片,能否将凸四边形纸片剪两刀,分割成四块,然后再拼成一个平行四边形?小明思考一会儿后口述他的做法:(1)找出四边的中点E、F、G、H;(2)沿EG、FH剪两刀,分成四块;(3)在C点处(见乙图),将三块……说到这里,王老师打断了他的表述,“我只需要听到这里,你的思路及操作非常正确”.(1)请你补充一下小明的口述,将Ⅰ、Ⅱ、Ⅲ进行怎样的变换与Ⅳ拼在一起?(2)请你说明一下,乙图是平行四边形纸块吗?(将两个图形进行恰当标注,以便解决问题)
学习一次函数时,老师直接告诉大家结论:“直线y=kx+b在平移时,k不变”.爱思考的小张同学在平面直角坐标系中任画了一条直线y=kx+b交x、y轴于B、A两点,假设直线向右平移了a个单位得到y=k1x+b1,请你和他一起探究说明一下k1=k.
张伯家去年种植蔬菜毛利润12000元. 今年比去年投入增加了10%,同时,由于农产品价格上扬,收入增长了60%,结果今年毛利润达到了26000元,请问去年张伯家蔬菜种植投入了多少钱?(毛利润=收入-投入)
已知E、F分别是平行四边形ABCD的边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G. (1)试说明△ADE≌△CBF;(2)当四边形AGBD是矩形时,请你确定四边形BEDF的形状并说明;(3)当四边形AGBD是矩形时,四边形AGCD是等腰梯形吗?直接说出结论.
如右图,5米长的一根木棒AB靠在墙上A点处,落地点为B,已知OB=4米.现设计从O点处拉出一根铁丝来加固该木棒.(1)请你在图中画出铁丝最短时的情形.(2)如果落地点B向墙角O处移近2米,则木棒上端A上移是少于2米,还是多于2米?说明理由.(3)如果从O点处拉出一根铁丝至AB的中点P处来加固木棒,这时铁丝在木棒移动后,需要加长还是剪短?还是不变?请说明理由.