初中数学

某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求出y与x之间的函数关系式;
(2)当x取何值时,y的值最大?最大值为多少?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点,与轴交于点,且

(1)求抛物线的解析式及顶点的坐标;
(2)判断的形状,证明你的结论;
(3)点轴上的一个动点,当的值最小时,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场将每件进价为160元的某种商品原来按每件200元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降低2元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润4320元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,

(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:抛物线经过点P(﹣1,﹣2b)(b、c为常量).
(1)求b+c的值;
(2)证明:无论b、c取何值,抛物线与x轴都有两个交点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点.
(1)请写出b、c的关系式;
(2)设直线y=7与该抛物线的交点为A、B,求AB的长;
(3)若P(a,﹣a)不在抛物线y=x2﹣2bx+c上,请求出b的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,抛物线经过A(,0),B(,0),C(0,2)三点.

(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,顶点A的坐标为,点B在抛物线上.

(1)直角顶点C的坐标为          
(2)求抛物线的解析式;
(3)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD.当△BCD的面积最大时,求点D的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为A(﹣1,0),另一交点为B,与y轴的交点坐标为C(0,3).

(1)求出b,c的值,并写出此二次函数的解析式;
(2)求出顶点D的坐标以及SBCD面积;
(3)根据图象,写出函数值y为正数时,自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数是常数).
(1)求证:不论为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.

(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为,那么小球抛出秒后达到最高点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

请在同一坐标系中画出二次函数①;②的图象。说出两条抛物线的位置关系,指出②的开口方向、对称轴和顶点坐标及增减性。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题