某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求出y与x之间的函数关系式;(2)当x取何值时,y的值最大?最大值为多少?(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
计算:.
已知:正方形ABCD的边长为2,⊙O交正方形ABCD的对角线AC所在直线于点T,连结TO交⊙O于点S,连结AS.如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连结DT、DS.①试判断线段DT、DS的数量关系和位置关系; ②求AS+AT的值;如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连结DT、DS.求AS-AT的值;如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连结ET、ES.根据(1)、(2)计算,通过观察、分析,对线段AS、AT的数量关系提出问题并解答.
如图,已知一次函数的图象与轴交于点A,与二次函数的图象交于轴上的一点B,二次函数的图象与轴只有唯一的交点C,且OC=2.求二次函数的解析式;设一次函数的图象与二次函数的图象的另一交点为D,已知P为轴上的一个动点,且△PBD为直角三角形,求:点P的坐标.
如图,在直角坐标系中放入一个矩形纸片OABC,将矩形纸片OABC翻折后,使点B恰好落在x轴上,记为D,折痕为CE,且OA=15,sin∠EDA=.求D点的坐标;求折痕CE所在直线的解析式.
现有一张演唱会的门票,小明与小华为了决定谁拿这张门票去看开幕式,小华设计了一种方案如下:如图,有、两个转盘,其中转盘被分成3等份,转盘被分成4等份,并在每一份内标上数字。两人同时分别转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将转盘指针指向的数字记为,B转盘指针指向的数、字记为,从而确定点的坐标为.请用列表或画树状图的方法写出所有可能得到的点的坐标;小华提议,在(1)的基础上,若点落在反比例函数图像上则小明赢;否则,自己赢.你觉得小明的提议对双方公平吗?请说明理由.